Low-temperature synthesis of highly ordered lithium-cobalt double phosphates with improved electrochemical characteristics in lithium nitrate melt
- 作者: Zharov N.V.1, Maslova М.V.1, Semushin V.V.1
-
隶属关系:
- Federal Research Center “Kola Scientific Center of the Russian Academy of Sciences”
- 期: 卷 99, 编号 4 (2025)
- 页面: 665-674
- 栏目: ЭЛЕКТРОХИМИЯ. ГЕНЕРАЦИЯ И АККУМУЛИРОВАНИЕ ЭНЕРГИИ ИЗ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ
- ##submission.dateSubmitted##: 14.06.2025
- ##submission.dateAccepted##: 14.06.2025
- ##submission.datePublished##: 15.06.2025
- URL: https://j-morphology.com/0044-4537/article/view/684411
- DOI: https://doi.org/10.31857/S0044453725040158
- EDN: https://elibrary.ru/FPRKTL
- ID: 684411
如何引用文章
详细
A low-temperature technique for preparation of highly dispersed powders of lithium-cobalt double phosphates with a highly ordered crystal lattice and a given morphology is proposed. The electrochemical performance and cyclic life of the obtained compounds are shown to exceed the respective characteristics of the known analogs. The proposed method can be extended to obtain a wide range of electrode materials for lithium-ion batteries with olivine structure.
全文:

作者简介
N. Zharov
Federal Research Center “Kola Scientific Center of the Russian Academy of Sciences”
编辑信件的主要联系方式.
Email: n.zharov@ksc.ru
I. V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials
俄罗斯联邦, ApatityМ. Maslova
Federal Research Center “Kola Scientific Center of the Russian Academy of Sciences”
Email: n.zharov@ksc.ru
I. V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials
俄罗斯联邦, ApatityV. Semushin
Federal Research Center “Kola Scientific Center of the Russian Academy of Sciences”
Email: n.zharov@ksc.ru
I. V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials
俄罗斯联邦, Apatity参考
- Xinxin Z., Guangchuan L., Dan L. // RSC Adv. 2017. V. 7. P. 37588. https://doi.org/10.1039/C7RA04714B.
- Zülke A., Li Y., Keil P., et al. // Batteries & Supercaps. 2021. V. 4. № 6. P. 934. https://doi.org/10.1002/batt.202100046.
- Song, S., Peng, X., Huang, K., et al. // Nanoscale Res. Lett. 2020. V. 15. P. 110. https://doi.org/10.1186/s11671-020-03335-8.
- Yang X., Lin M., Zhen G., et al. // Adv. Funct. Mater. 2020. V. 30. P. 2004664. https://doi.org/10.1002/adfm.202004664.
- Lyu Y., Wu X., Wang K., et al. // Adv. Energy Mater. 2021. V. 11. P. 2000982. https://doi.org/10.1002/aenm.202000982.
- Tolganbek N., Yerkinbekova Y., Kalybekkyzy S., et al. // J. Alloys Compd. 2021. V. 882. P. 160. https://doi.org/10.1016/j.jallcom.2021.160774.
- Jiangtao H., Weiyuan H., Luyi Y., et al. // Nanoscale. 2020. V. 12. № 28. P. 15036. http://dx.doi.org/10.1039/D0NR03776A.
- Wani T.A., Suresh G. // J. Energy Storage. 2021. V. 44. P. 103. http://dx.doi.org/10.1016/j.est.2021.103307.
- Zhang M., Garcia-Araez N., Hector A. // J. Mater. Chem. A. 2018. V. 6. № 30. P. 14483. http://dx.doi.org/10.1039/C8TA04063J.
- Markevich E., Sharabi R., Gottlieb H., et al. // Electrochem. Commun. 2012. V. 15. № 1. P. 22. https://doi.org/10.1016/j.elecom.2011.11.014.
- Wu X., Meledina M., Tempel H., et al. // J. Power Sources. 2020. V. 450. P. 227. https://doi.org/10.1016/j.jpowsour.2020.227726.
- Wu X., Meledina M., Barthel J., et al. // Energy Storage Mater. 2019. V. 22. P. 138. https://doi.org/10.1016/j.ensm.2019.07.004.
- Hou Y., Chang K., Li B., et al. // Nano Res. 2018. V. 11. P. 2424. https://doi.org/10.1007/s12274-017-1864-0.
- Zhaojin L., Zhenzhen P., Hui Z., et al. // Nano Lett. 2016. V. 16. № 1. P. 795. https://doi.org/10.1021/acs.nanolett.5b04855.
- Murukanahally Kempaiah D., Quang T., Takaaki T., et al. // RSC Adv. 2014. V. 4. https://doi.org/10.1039/C4RA10689J.
- Zharov N.V., Maslova M.V., Ivanenko V.I., et al. // Russ. J. Phys. Chem. 2023. V. 97. P. 2529. https://doi.org/10.1134/S0036024423110365.
- Wu B., Xu H., Mu D., et al. // J. Power Sources. 2016. V. 304. P. 181. https://doi.org/10.1016/j.jpowsour.2015.11.023.
- Truong Q., Devaraju M.K., Ganbe Y., et al. // Sci Rep. 2014. V. 4. P. 3975. https://doi.org/10.1038/srep03975.
- Truong Q., Devaraju M.K., Honma I. // J. Mater. Chem. 2014. V. 2. P. 3975 https://doi.org/10.1039/C4TA03566F.
- Manzi, J.; Curcio, M.; Brutti, S. // Nanomater. 2015. V. 5. P. 2212. https://doi.org/10.3390/nano5042212.
- Maeyoshi Y., Miyamoto S., Noda Y., et al. // J. Power Sources. 2017. V. 337. P. 92. https://doi.org/10.1016/j.jpowsour.2016.10.106.
- Ludwig J., Marino C., Haering D., et al. // RSC Adv. 2016. V. 6. № . 86. P. 82984. https://dx.doi.org/10.1039/C6RA19767A.
- Örnek A. // J. Chem. Eng. 2018. V. 331. P. 501. https://doi.org/10.1016/j.cej.2017.09.007.
- Truong Q.D., Devaraju M.K., Tomai T., et al. // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 26. https://doi.org/10.1021/am403018n.
补充文件
