Низкотемпературный синтез высокоупорядоченных двойных фосфатов лития-кобальта с улучшенными электрохимическими характеристиками в расплаве нитрата лития
- Авторы: Жаров Н.В.1, Маслова М.В.1, Семушин В.В.1
-
Учреждения:
- Кольский научный центр РАН
- Выпуск: Том 99, № 4 (2025)
- Страницы: 665-674
- Раздел: ЭЛЕКТРОХИМИЯ. ГЕНЕРАЦИЯ И АККУМУЛИРОВАНИЕ ЭНЕРГИИ ИЗ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ
- Статья получена: 14.06.2025
- Статья одобрена: 14.06.2025
- Статья опубликована: 15.06.2025
- URL: https://j-morphology.com/0044-4537/article/view/684411
- DOI: https://doi.org/10.31857/S0044453725040158
- EDN: https://elibrary.ru/FPRKTL
- ID: 684411
Цитировать
Аннотация
Предложена низкотемпературная методика получения высокодисперсных порошков двойных фосфатов лития-кобальта с высокоупорядоченной кристаллической решеткой и заданной морфологией. Показано, что электрохимическая производительность и циклический ресурс полученных соединений превосходят соответствующие характеристики известных аналогов. Предложенный метод может быть расширен на получение широкого ряда электродных материалов литий-ионных аккумуляторов со структурой оливина.
Ключевые слова
Полный текст

Об авторах
Н. В. Жаров
Кольский научный центр РАН
Автор, ответственный за переписку.
Email: n.zharov@ksc.ru
Институт химии и технологии редких элементов и минерального сырья им. И. В. Тананаева
Россия, АпатитыМ. В. Маслова
Кольский научный центр РАН
Email: n.zharov@ksc.ru
Институт химии и технологии редких элементов и минерального сырья им. И. В. Тананаева
Россия, АпатитыВ. В. Семушин
Кольский научный центр РАН
Email: n.zharov@ksc.ru
Институт химии и технологии редких элементов и минерального сырья им. И. В. Тананаева
Россия, АпатитыСписок литературы
- Xinxin Z., Guangchuan L., Dan L. // RSC Adv. 2017. V. 7. P. 37588. https://doi.org/10.1039/C7RA04714B.
- Zülke A., Li Y., Keil P., et al. // Batteries & Supercaps. 2021. V. 4. № 6. P. 934. https://doi.org/10.1002/batt.202100046.
- Song, S., Peng, X., Huang, K., et al. // Nanoscale Res. Lett. 2020. V. 15. P. 110. https://doi.org/10.1186/s11671-020-03335-8.
- Yang X., Lin M., Zhen G., et al. // Adv. Funct. Mater. 2020. V. 30. P. 2004664. https://doi.org/10.1002/adfm.202004664.
- Lyu Y., Wu X., Wang K., et al. // Adv. Energy Mater. 2021. V. 11. P. 2000982. https://doi.org/10.1002/aenm.202000982.
- Tolganbek N., Yerkinbekova Y., Kalybekkyzy S., et al. // J. Alloys Compd. 2021. V. 882. P. 160. https://doi.org/10.1016/j.jallcom.2021.160774.
- Jiangtao H., Weiyuan H., Luyi Y., et al. // Nanoscale. 2020. V. 12. № 28. P. 15036. http://dx.doi.org/10.1039/D0NR03776A.
- Wani T.A., Suresh G. // J. Energy Storage. 2021. V. 44. P. 103. http://dx.doi.org/10.1016/j.est.2021.103307.
- Zhang M., Garcia-Araez N., Hector A. // J. Mater. Chem. A. 2018. V. 6. № 30. P. 14483. http://dx.doi.org/10.1039/C8TA04063J.
- Markevich E., Sharabi R., Gottlieb H., et al. // Electrochem. Commun. 2012. V. 15. № 1. P. 22. https://doi.org/10.1016/j.elecom.2011.11.014.
- Wu X., Meledina M., Tempel H., et al. // J. Power Sources. 2020. V. 450. P. 227. https://doi.org/10.1016/j.jpowsour.2020.227726.
- Wu X., Meledina M., Barthel J., et al. // Energy Storage Mater. 2019. V. 22. P. 138. https://doi.org/10.1016/j.ensm.2019.07.004.
- Hou Y., Chang K., Li B., et al. // Nano Res. 2018. V. 11. P. 2424. https://doi.org/10.1007/s12274-017-1864-0.
- Zhaojin L., Zhenzhen P., Hui Z., et al. // Nano Lett. 2016. V. 16. № 1. P. 795. https://doi.org/10.1021/acs.nanolett.5b04855.
- Murukanahally Kempaiah D., Quang T., Takaaki T., et al. // RSC Adv. 2014. V. 4. https://doi.org/10.1039/C4RA10689J.
- Zharov N.V., Maslova M.V., Ivanenko V.I., et al. // Russ. J. Phys. Chem. 2023. V. 97. P. 2529. https://doi.org/10.1134/S0036024423110365.
- Wu B., Xu H., Mu D., et al. // J. Power Sources. 2016. V. 304. P. 181. https://doi.org/10.1016/j.jpowsour.2015.11.023.
- Truong Q., Devaraju M.K., Ganbe Y., et al. // Sci Rep. 2014. V. 4. P. 3975. https://doi.org/10.1038/srep03975.
- Truong Q., Devaraju M.K., Honma I. // J. Mater. Chem. 2014. V. 2. P. 3975 https://doi.org/10.1039/C4TA03566F.
- Manzi, J.; Curcio, M.; Brutti, S. // Nanomater. 2015. V. 5. P. 2212. https://doi.org/10.3390/nano5042212.
- Maeyoshi Y., Miyamoto S., Noda Y., et al. // J. Power Sources. 2017. V. 337. P. 92. https://doi.org/10.1016/j.jpowsour.2016.10.106.
- Ludwig J., Marino C., Haering D., et al. // RSC Adv. 2016. V. 6. № . 86. P. 82984. https://dx.doi.org/10.1039/C6RA19767A.
- Örnek A. // J. Chem. Eng. 2018. V. 331. P. 501. https://doi.org/10.1016/j.cej.2017.09.007.
- Truong Q.D., Devaraju M.K., Tomai T., et al. // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 26. https://doi.org/10.1021/am403018n.
Дополнительные файлы
