Low-temperature synthesis of highly ordered lithium-cobalt double phosphates with improved electrochemical characteristics in lithium nitrate melt

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A low-temperature technique for preparation of highly dispersed powders of lithium-cobalt double phosphates with a highly ordered crystal lattice and a given morphology is proposed. The electrochemical performance and cyclic life of the obtained compounds are shown to exceed the respective characteristics of the known analogs. The proposed method can be extended to obtain a wide range of electrode materials for lithium-ion batteries with olivine structure.

Texto integral

Acesso é fechado

Sobre autores

N. Zharov

Federal Research Center “Kola Scientific Center of the Russian Academy of Sciences”

Autor responsável pela correspondência
Email: n.zharov@ksc.ru

I. V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Rússia, Apatity

М. Maslova

Federal Research Center “Kola Scientific Center of the Russian Academy of Sciences”

Email: n.zharov@ksc.ru

I. V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Rússia, Apatity

V. Semushin

Federal Research Center “Kola Scientific Center of the Russian Academy of Sciences”

Email: n.zharov@ksc.ru

I. V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Rússia, Apatity

Bibliografia

  1. Xinxin Z., Guangchuan L., Dan L. // RSC Adv. 2017. V. 7. P. 37588. https://doi.org/10.1039/C7RA04714B.
  2. Zülke A., Li Y., Keil P., et al. // Batteries & Supercaps. 2021. V. 4. № 6. P. 934. https://doi.org/10.1002/batt.202100046.
  3. Song, S., Peng, X., Huang, K., et al. // Nanoscale Res. Lett. 2020. V. 15. P. 110. https://doi.org/10.1186/s11671-020-03335-8.
  4. Yang X., Lin M., Zhen G., et al. // Adv. Funct. Mater. 2020. V. 30. P. 2004664. https://doi.org/10.1002/adfm.202004664.
  5. Lyu Y., Wu X., Wang K., et al. // Adv. Energy Mater. 2021. V. 11. P. 2000982. https://doi.org/10.1002/aenm.202000982.
  6. Tolganbek N., Yerkinbekova Y., Kalybekkyzy S., et al. // J. Alloys Compd. 2021. V. 882. P. 160. https://doi.org/10.1016/j.jallcom.2021.160774.
  7. Jiangtao H., Weiyuan H., Luyi Y., et al. // Nanoscale. 2020. V. 12. № 28. P. 15036. http://dx.doi.org/10.1039/D0NR03776A.
  8. Wani T.A., Suresh G. // J. Energy Storage. 2021. V. 44. P. 103. http://dx.doi.org/10.1016/j.est.2021.103307.
  9. Zhang M., Garcia-Araez N., Hector A. // J. Mater. Chem. A. 2018. V. 6. № 30. P. 14483. http://dx.doi.org/10.1039/C8TA04063J.
  10. Markevich E., Sharabi R., Gottlieb H., et al. // Electrochem. Commun. 2012. V. 15. № 1. P. 22. https://doi.org/10.1016/j.elecom.2011.11.014.
  11. Wu X., Meledina M., Tempel H., et al. // J. Power Sources. 2020. V. 450. P. 227. https://doi.org/10.1016/j.jpowsour.2020.227726.
  12. Wu X., Meledina M., Barthel J., et al. // Energy Storage Mater. 2019. V. 22. P. 138. https://doi.org/10.1016/j.ensm.2019.07.004.
  13. Hou Y., Chang K., Li B., et al. // Nano Res. 2018. V. 11. P. 2424. https://doi.org/10.1007/s12274-017-1864-0.
  14. Zhaojin L., Zhenzhen P., Hui Z., et al. // Nano Lett. 2016. V. 16. № 1. P. 795. https://doi.org/10.1021/acs.nanolett.5b04855.
  15. Murukanahally Kempaiah D., Quang T., Takaaki T., et al. // RSC Adv. 2014. V. 4. https://doi.org/10.1039/C4RA10689J.
  16. Zharov N.V., Maslova M.V., Ivanenko V.I., et al. // Russ. J. Phys. Chem. 2023. V. 97. P. 2529. https://doi.org/10.1134/S0036024423110365.
  17. Wu B., Xu H., Mu D., et al. // J. Power Sources. 2016. V. 304. P. 181. https://doi.org/10.1016/j.jpowsour.2015.11.023.
  18. Truong Q., Devaraju M.K., Ganbe Y., et al. // Sci Rep. 2014. V. 4. P. 3975. https://doi.org/10.1038/srep03975.
  19. Truong Q., Devaraju M.K., Honma I. // J. Mater. Chem. 2014. V. 2. P. 3975 https://doi.org/10.1039/C4TA03566F.
  20. Manzi, J.; Curcio, M.; Brutti, S. // Nanomater. 2015. V. 5. P. 2212. https://doi.org/10.3390/nano5042212.
  21. Maeyoshi Y., Miyamoto S., Noda Y., et al. // J. Power Sources. 2017. V. 337. P. 92. https://doi.org/10.1016/j.jpowsour.2016.10.106.
  22. Ludwig J., Marino C., Haering D., et al. // RSC Adv. 2016. V. 6. № . 86. P. 82984. https://dx.doi.org/10.1039/C6RA19767A.
  23. Örnek A. // J. Chem. Eng. 2018. V. 331. P. 501. https://doi.org/10.1016/j.cej.2017.09.007.
  24. Truong Q.D., Devaraju M.K., Tomai T., et al. // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 26. https://doi.org/10.1021/am403018n.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diffraction patterns of the obtained precursors: a) NCP1, b) NCP2, c) bar diagram of the standard (PDF card No. 01-089-6598).

Baixar (182KB)
3. Fig. 2. SEM images of the obtained precursors: a) NCP1, b) NCP2.

Baixar (208KB)
4. Fig. 3. Diffraction patterns of synthesized LiCoPO4: a) LCP1, b) LCP2, c) bar diagram of the standard (PDF card No. 01-086-5257).

Baixar (212KB)
5. Fig. 4. SEM images of target products: a) LCP1; b) LCP2.

Baixar (222KB)
6. Fig. 5. IR spectra of the obtained LCP2 (1) and LCP1 (2).

Baixar (80KB)
7. Fig. 6. Charge and discharge curves of the synthesized powders: a) charge curve LCP1; b) charge curve LCP2; c) discharge curve LCP1; d) discharge curve LCP2; curves 1, 2, 3 correspond to the 1st, 25th and 50th charge/discharge cycles. E is the capacity, P is the potential.

Baixar (191KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025