Optimization of hydrothermal synthesis of pharmacosiderite-type titanosilicates for extraction of 137Cs and 90Sr from liquid media with high salinity
- Autores: Marmaza P.A.1,2, Ivanov N.P.1, Kaptakov V.O.3, Zernov Y.G.1, Mayorov V.Y.1,4, Fedorets A.N.1, Shichalin O.O.1,2, Papynov E.K.1
-
Afiliações:
- Far Eastern Federal University
- Sakhalin State University
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
- Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of Sciences
- Edição: Volume 70, Nº 3 (2025)
- Páginas: 346-356
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://j-morphology.com/0044-457X/article/view/684983
- DOI: https://doi.org/10.31857/S0044457X25030062
- EDN: https://elibrary.ru/BBFIVT
- ID: 684983
Citar
Texto integral
Resumo
The paper presents the synthesis of and the influence of the duration of hydrothermal synthesis on the sorption properties of pharmacosiderite type titanosilicates towards Cs(I) and Sr (II), structural phase composition, surface morphology and textural characteristics is investigated. The composition, morphology and structure of the samples were studied by XRF, SEM, and EMF methods. The structural characteristics of powders have been studied by BET and DFT methods. The sorption properties towards the radionuclide 137Cs in micro-concentration under adsorption conditions from model solutions of low and medium concentration of interfering impurities are investigated for the first time for disubstituted pharmacosiderite-type titanosilicates.
Texto integral

Sobre autores
P. Marmaza
Far Eastern Federal University; Sakhalin State University
Autor responsável pela correspondência
Email: marmaza.pa@dvfu.ru
Rússia, Vladivostok; Yuzhno-Sakhalinsk
N. Ivanov
Far Eastern Federal University
Email: marmaza.pa@dvfu.ru
Rússia, Vladivostok
V. Kaptakov
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: marmaza.pa@dvfu.ru
Rússia, Moscow
Ya. Zernov
Far Eastern Federal University
Email: marmaza.pa@dvfu.ru
Rússia, Vladivostok
V. Mayorov
Far Eastern Federal University; Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of Sciences
Email: marmaza.pa@dvfu.ru
Rússia, Vladivostok; Vladivostok
A. Fedorets
Far Eastern Federal University
Email: marmaza.pa@dvfu.ru
Rússia, Vladivostok
O. Shichalin
Far Eastern Federal University; Sakhalin State University
Email: marmaza.pa@dvfu.ru
Rússia, Vladivostok; Vladivostok
E. Papynov
Far Eastern Federal University
Email: marmaza.pa@dvfu.ru
Rússia, Vladivostok
Bibliografia
- Chen S., Yang X., Wang Z. et al. // J. Hazard. Mater. 2021. V. 410. P. 124608. https://doi.org/10.1016/j.jhazmat.2020.124608
- Nekrasova N.A., Milyutin V.V., Kaptakov V.O. et al. // Inorganics. 2023. V. 11. № 3. P. 126. https://doi.org/10.3390/inorganics11030126
- Shichalin O.O., Papynov E.K., Ivanov N.P. et al. // Sep. Purif. Technol. 2024. V. 332. 2023. P. 125662. https://doi.org/10.1016/j.seppur.2023.125662
- Vellingiri K., Kim K.H., Pournara A. et al. // Prog. Mater. Sci. 2018. V. 94. P. 1. https://doi.org/10.1016/j.pmatsci.2018.01.002
- Mohiuddin I., Grover A., Aulakh J.S. et al. // J. Hazard. Mater. 2021. V. 401. Р. 123782. https://doi.org/10.1016/j.jhazmat.2020.123782
- Shichalin O.O., Papynov E.K., Belov A.A. et al. // Solid State Sci. 2024. V. 154. № July. P. 107619. https://doi.org/10.1016/j.solidstatesciences.2024.107619
- Shichalin O.O., Vereshchagina T.A., Buravlev I.Y. et al. // J. Environ. Chem. Eng. 2024. V. 12. № 5. P. 113893. https://doi.org/10.1016/j.jece.2024.113893
- Shichalin O.O., Yarusova S.B., Ivanov N.P. et al. // J. Water Process Eng. 2024. V. 59. Р. 105042. https://doi.org/10.1016/j.jwpe.2024.105042
- Perovskiy I., Yanicheva N.Y., Stalyugin V.V. et al. // Microporous Mesoporous Mater. 2021. V. 311. P. 110716. https://doi.org/10.1016/j.micromeso.2020.110716
- Abass M.R., Abou-Lilah R.A., Kasem A.E. // Russ. J. Inorg. Chem. 2024. V. 69. P. 98. https://doi.org/10.1134/S0036023623602507
- Luo J., Li X., Zhang F., et al. // Int. J. Miner. Metall. Mater. 2021. V. 28. № 6. P. 1057. https://doi.org/10.1007/s12613-020-2056-6
- Nikolaev A.I., Gerasimova L.G., Maslova M.V. et al. // Theor. Found. Chem. Eng. 2021. V. 55. № 5. P. 1078. https://doi.org/10.1134/S0040579521050110
- Kozlova T.O., Khvorostinin E.Y., Rodionova A.A. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 11. P. 1503. https://doi.org/10.1134/S0036023623601964
- Bezhin N.A., Dovhyi I.I., Lyapunov A.Y. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 9. P. 1178. https://doi.org/10.1134/S0036023619090031
- Maslova M.V., Gerasimova L.G., Knyazeva A.I. // Russ. J. Inorg. Chem. 2015. V. 60. № 4. P. 442. https://doi.org/10.1134/S0036023615040154
- Shapkin N.P., Ermak I.M., Razov V.I. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 6. P. 587. https://doi.org/10.1134/S0036023614060187
- Gordienko P.S., Yarusova S.B., Shabalin I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 9. P. 1393. https://doi.org/10.1134/S0036023622090042
- Lee N.K., Khalid H.R., Lee H.K. // Microporous Mesoporous Mater. 2017. V. 242. P. 238. https://doi.org/10.1016/j.micromeso.2017.01.030
- Șenilă M., Neag E., Tănăselia C. et al. // Materials (Basel). 2023. V. 16. № 8. P. 2965. https://doi.org/10.3390/ma16082965
- Ivanov N.P., Drankov A.N., Papynov E.K. et al. // Prot. Met. Phys. Chem. Surfaces. 2023. V. 59. № 5. P. 868. https://doi.org/10.1134/S2070205123701058
- Nong C., Li X., Xu J. // J. Radioanal. Nucl. Chem. 2023. V. 332. № 4. P. 1263. https://doi.org/10.1007/s10967-022-08721-3
- Zhou Y., Li Y., Su Y. et al. // J. Radioanal. Nucl. Chem. 2023. V. 332. № 8. P. 3191. https://doi.org/10.1007/s10967-023-08948-8
- Trung N.D., Ping N., Dan H.K. // Environ. Eng. Res. 2023. V. 28. № 6. P. 220389. https://doi.org/10.4491/eer.2022.389
- Nagasaka C.A., Ogiwara N., Kobayashi S. et al. // Small. 2024. V. 20. № 17. P. 2307004. https://doi.org/10.1002/smll.202307004
- Asgari P., Mousavi S.H., Aghayan H. et al. // Microchem. J. 2019. V. 150. P. 104188. https://doi.org/10.1016/j.microc.2019.104188
- Ivanov N.P., Dran’kov A.N., Shichalin O.O. et al. // J. of Radioanal. and Nucl. Chem. 2024. V 333. P. 1213. https://doi.org/10.1007/s10967-024-09362-4
- Balybina V.A., Dran’kov A.N., Shichalin O.O. et al. // J. Compos. Sci. 2023. V. 7. № 11. P. 458. https://doi.org/10.3390/jcs7110458
- Ivanov N.P., Marmaza P.A., Shichalin O.O. et al. // Radiochem. 2023. V. 65. Suppl. 1. P. S29. https://doi.org/10.1134/S1066362223070032
- Perovskiy I., Yanicheva N.Y., Stalyugin V.V. et al. // Microporous Mesoporous Mater. 2021. V. 311. Р. 110716. https://doi.org/10.1016/j.micromeso.2020.110716
- Popa K., Pavel C.C. // Desalination. 2012. V. 293. P. 78. https://doi.org/10.1016/j.desal.2012.02.027
- Gainey S.R., Lauar M.T., Adcock C.T. et al. // Microporous Mesoporous Mater. 2020. V. 296. P. 109995. https://doi.org/10.1016/j.micromeso.2019.109995
- Campbell E.L., Westesen A.M., Peterson R.A. // Radiochim. Acta. 2023. V. 111. № 10. P. 735. https://doi.org/10.1515/ract-2023-0134
- Perovskiy I.A., Shushkov D.A., Ponaryadov A.V. et al. // J. Environ. Chem. Eng. 2023. V. 11. № 5. P. 110691. https://doi.org/10.1016/j.jece.2023.110691
- Park Y., Shin W.S., Reddy G.S. et al. // J. Nanoelectron. Optoelectron. 2010. V. 5. № 2. P. 238. https://doi.org/10.1166/jno.2010.1101
- Westesen A.M., Campbell E.L., Fiskum S.K. et al. // Sep. Sci. Technol. 2022. V. 57. № 15. P. 2482. https://doi.org/10.1080/01496395.2022.2059378
- Panikorovskii T.L., Kalashnikova G.O., Nikolaev A.I. et al. // Minerals. 2022. V. 12. № 2. P. 248. https://doi.org/10.3390/min12020248
- Dyer A., Newton J., O’Brien L. et al. // Microporous Mesoporous Mater. 2009. V. 117. № 1. P. 304. https://doi.org/10.1016/j.micromeso.2008.07.003
- Dyer A., Newton J., O’Brien L. et al. // Microporous Mesoporous Mater. 2009. V. 120. № 3. P. 272. https://doi.org/10.1016/j.micromeso.2008.11.016
- Yakovenchuk V.N., Nikolaev A.P., Selivanova E.A. et al. // Am. Mineral. 2009. V. 94. № 10. P. 1450. https://doi.org/10.2138/am.2009.3065
- Milyutin V.V., Nekrasova N.A., Yanicheva N.Y. et al. // Radiochemistry. 2017. V. 59. № 1. P. 65. https://doi.org/10.1134/S1066362217010088
- Nikolaev A.I., Gerasimova L.G., Maslova M.V. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2019. V. 704. № 1. P. 012003. https://doi.org/10.1088/1757-899X/704/1/012003
- Yakovenchuk V.N., Selivanova E.A., Krivovichev S.V. et al. // Miner. as Adv. Mater. II. Berlin, Heidelberg: Springer Berlin-Heidelberg, 2011. P. 205. https://doi.org/10.1007/978-3-642-20018-2_20
- Santos-Vieira I.C.M.S., Lin Z., Rocha J. // Green Chem. 2022. V. 24. № 13. P. 5088. https://doi.org/10.1039/D2GC00654E
- Chapman D.M., Roe A.L. // Zeolites. 1990. V. 10. № 8. P. 730. https://doi.org/10.1016/0144-2449(90)90054-U
- Lihareva N., Kostov-Kytin V. // Bulg. Chem. Commun. 2014. V. 46. № 3. P. 569.
- Kim Y.K., Kim S., Kim Y. et al. // Appl. Surf. Sci. 2019. V. 493. P. 165. https://doi.org/10.1016/j.apsusc.2019.07.008
- Eom H.H., Kim H., Harbottle D. et al. // Sep. Purif. Technol. 2024. V. 330. P. 125550. https://doi.org/10.1016/j.seppur.2023.125550
- Milyutin V.V., Nekrasova N.A., Kaptakov V.O. et al. // Adsorption. 2023. V. 29. № 5–6. P. 323. https://doi.org/10.1007/s10450-023-00407-w
- Nekrasova N.A., Milyutin V. V., Kaptakov V.O. et al. // Inorganics. 2023. V. 11. № 3. P. 126. https://doi.org/10.3390/inorganics11030126
Arquivos suplementares
