Optimization of hydrothermal synthesis of pharmacosiderite-type titanosilicates for extraction of 137Cs and 90Sr from liquid media with high salinity

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The paper presents the synthesis of and the influence of the duration of hydrothermal synthesis on the sorption properties of pharmacosiderite type titanosilicates towards Cs(I) and Sr (II), structural phase composition, surface morphology and textural characteristics is investigated. The composition, morphology and structure of the samples were studied by XRF, SEM, and EMF methods. The structural characteristics of powders have been studied by BET and DFT methods. The sorption properties towards the radionuclide 137Cs in micro-concentration under adsorption conditions from model solutions of low and medium concentration of interfering impurities are investigated for the first time for disubstituted pharmacosiderite-type titanosilicates.

Толық мәтін

Рұқсат жабық

Авторлар туралы

P. Marmaza

Far Eastern Federal University; Sakhalin State University

Хат алмасуға жауапты Автор.
Email: marmaza.pa@dvfu.ru
Ресей, Vladivostok; Yuzhno-Sakhalinsk

N. Ivanov

Far Eastern Federal University

Email: marmaza.pa@dvfu.ru
Ресей, Vladivostok

V. Kaptakov

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: marmaza.pa@dvfu.ru
Ресей, Moscow

Ya. Zernov

Far Eastern Federal University

Email: marmaza.pa@dvfu.ru
Ресей, Vladivostok

V. Mayorov

Far Eastern Federal University; Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of Sciences

Email: marmaza.pa@dvfu.ru
Ресей, Vladivostok; Vladivostok

A. Fedorets

Far Eastern Federal University

Email: marmaza.pa@dvfu.ru
Ресей, Vladivostok

O. Shichalin

Far Eastern Federal University; Sakhalin State University

Email: marmaza.pa@dvfu.ru
Ресей, Vladivostok; Vladivostok

E. Papynov

Far Eastern Federal University

Email: marmaza.pa@dvfu.ru
Ресей, Vladivostok

Әдебиет тізімі

  1. Chen S., Yang X., Wang Z. et al. // J. Hazard. Mater. 2021. V. 410. P. 124608. https://doi.org/10.1016/j.jhazmat.2020.124608
  2. Nekrasova N.A., Milyutin V.V., Kaptakov V.O. et al. // Inorganics. 2023. V. 11. № 3. P. 126. https://doi.org/10.3390/inorganics11030126
  3. Shichalin O.O., Papynov E.K., Ivanov N.P. et al. // Sep. Purif. Technol. 2024. V. 332. 2023. P. 125662. https://doi.org/10.1016/j.seppur.2023.125662
  4. Vellingiri K., Kim K.H., Pournara A. et al. // Prog. Mater. Sci. 2018. V. 94. P. 1. https://doi.org/10.1016/j.pmatsci.2018.01.002
  5. Mohiuddin I., Grover A., Aulakh J.S. et al. // J. Hazard. Mater. 2021. V. 401. Р. 123782. https://doi.org/10.1016/j.jhazmat.2020.123782
  6. Shichalin O.O., Papynov E.K., Belov A.A. et al. // Solid State Sci. 2024. V. 154. № July. P. 107619. https://doi.org/10.1016/j.solidstatesciences.2024.107619
  7. Shichalin O.O., Vereshchagina T.A., Buravlev I.Y. et al. // J. Environ. Chem. Eng. 2024. V. 12. № 5. P. 113893. https://doi.org/10.1016/j.jece.2024.113893
  8. Shichalin O.O., Yarusova S.B., Ivanov N.P. et al. // J. Water Process Eng. 2024. V. 59. Р. 105042. https://doi.org/10.1016/j.jwpe.2024.105042
  9. Perovskiy I., Yanicheva N.Y., Stalyugin V.V. et al. // Microporous Mesoporous Mater. 2021. V. 311. P. 110716. https://doi.org/10.1016/j.micromeso.2020.110716
  10. Abass M.R., Abou-Lilah R.A., Kasem A.E. // Russ. J. Inorg. Chem. 2024. V. 69. P. 98. https://doi.org/10.1134/S0036023623602507
  11. Luo J., Li X., Zhang F., et al. // Int. J. Miner. Metall. Mater. 2021. V. 28. № 6. P. 1057. https://doi.org/10.1007/s12613-020-2056-6
  12. Nikolaev A.I., Gerasimova L.G., Maslova M.V. et al. // Theor. Found. Chem. Eng. 2021. V. 55. № 5. P. 1078. https://doi.org/10.1134/S0040579521050110
  13. Kozlova T.O., Khvorostinin E.Y., Rodionova A.A. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 11. P. 1503. https://doi.org/10.1134/S0036023623601964
  14. Bezhin N.A., Dovhyi I.I., Lyapunov A.Y. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 9. P. 1178. https://doi.org/10.1134/S0036023619090031
  15. Maslova M.V., Gerasimova L.G., Knyazeva A.I. // Russ. J. Inorg. Chem. 2015. V. 60. № 4. P. 442. https://doi.org/10.1134/S0036023615040154
  16. Shapkin N.P., Ermak I.M., Razov V.I. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 6. P. 587. https://doi.org/10.1134/S0036023614060187
  17. Gordienko P.S., Yarusova S.B., Shabalin I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 9. P. 1393. https://doi.org/10.1134/S0036023622090042
  18. Lee N.K., Khalid H.R., Lee H.K. // Microporous Mesoporous Mater. 2017. V. 242. P. 238. https://doi.org/10.1016/j.micromeso.2017.01.030
  19. Șenilă M., Neag E., Tănăselia C. et al. // Materials (Basel). 2023. V. 16. № 8. P. 2965. https://doi.org/10.3390/ma16082965
  20. Ivanov N.P., Drankov A.N., Papynov E.K. et al. // Prot. Met. Phys. Chem. Surfaces. 2023. V. 59. № 5. P. 868. https://doi.org/10.1134/S2070205123701058
  21. Nong C., Li X., Xu J. // J. Radioanal. Nucl. Chem. 2023. V. 332. № 4. P. 1263. https://doi.org/10.1007/s10967-022-08721-3
  22. Zhou Y., Li Y., Su Y. et al. // J. Radioanal. Nucl. Chem. 2023. V. 332. № 8. P. 3191. https://doi.org/10.1007/s10967-023-08948-8
  23. Trung N.D., Ping N., Dan H.K. // Environ. Eng. Res. 2023. V. 28. № 6. P. 220389. https://doi.org/10.4491/eer.2022.389
  24. Nagasaka C.A., Ogiwara N., Kobayashi S. et al. // Small. 2024. V. 20. № 17. P. 2307004. https://doi.org/10.1002/smll.202307004
  25. Asgari P., Mousavi S.H., Aghayan H. et al. // Microchem. J. 2019. V. 150. P. 104188. https://doi.org/10.1016/j.microc.2019.104188
  26. Ivanov N.P., Dran’kov A.N., Shichalin O.O. et al. // J. of Radioanal. and Nucl. Chem. 2024. V 333. P. 1213. https://doi.org/10.1007/s10967-024-09362-4
  27. Balybina V.A., Dran’kov A.N., Shichalin O.O. et al. // J. Compos. Sci. 2023. V. 7. № 11. P. 458. https://doi.org/10.3390/jcs7110458
  28. Ivanov N.P., Marmaza P.A., Shichalin O.O. et al. // Radiochem. 2023. V. 65. Suppl. 1. P. S29. https://doi.org/10.1134/S1066362223070032
  29. Perovskiy I., Yanicheva N.Y., Stalyugin V.V. et al. // Microporous Mesoporous Mater. 2021. V. 311. Р. 110716. https://doi.org/10.1016/j.micromeso.2020.110716
  30. Popa K., Pavel C.C. // Desalination. 2012. V. 293. P. 78. https://doi.org/10.1016/j.desal.2012.02.027
  31. Gainey S.R., Lauar M.T., Adcock C.T. et al. // Microporous Mesoporous Mater. 2020. V. 296. P. 109995. https://doi.org/10.1016/j.micromeso.2019.109995
  32. Campbell E.L., Westesen A.M., Peterson R.A. // Radiochim. Acta. 2023. V. 111. № 10. P. 735. https://doi.org/10.1515/ract-2023-0134
  33. Perovskiy I.A., Shushkov D.A., Ponaryadov A.V. et al. // J. Environ. Chem. Eng. 2023. V. 11. № 5. P. 110691. https://doi.org/10.1016/j.jece.2023.110691
  34. Park Y., Shin W.S., Reddy G.S. et al. // J. Nanoelectron. Optoelectron. 2010. V. 5. № 2. P. 238. https://doi.org/10.1166/jno.2010.1101
  35. Westesen A.M., Campbell E.L., Fiskum S.K. et al. // Sep. Sci. Technol. 2022. V. 57. № 15. P. 2482. https://doi.org/10.1080/01496395.2022.2059378
  36. Panikorovskii T.L., Kalashnikova G.O., Nikolaev A.I. et al. // Minerals. 2022. V. 12. № 2. P. 248. https://doi.org/10.3390/min12020248
  37. Dyer A., Newton J., O’Brien L. et al. // Microporous Mesoporous Mater. 2009. V. 117. № 1. P. 304. https://doi.org/10.1016/j.micromeso.2008.07.003
  38. Dyer A., Newton J., O’Brien L. et al. // Microporous Mesoporous Mater. 2009. V. 120. № 3. P. 272. https://doi.org/10.1016/j.micromeso.2008.11.016
  39. Yakovenchuk V.N., Nikolaev A.P., Selivanova E.A. et al. // Am. Mineral. 2009. V. 94. № 10. P. 1450. https://doi.org/10.2138/am.2009.3065
  40. Milyutin V.V., Nekrasova N.A., Yanicheva N.Y. et al. // Radiochemistry. 2017. V. 59. № 1. P. 65. https://doi.org/10.1134/S1066362217010088
  41. Nikolaev A.I., Gerasimova L.G., Maslova M.V. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2019. V. 704. № 1. P. 012003. https://doi.org/10.1088/1757-899X/704/1/012003
  42. Yakovenchuk V.N., Selivanova E.A., Krivovichev S.V. et al. // Miner. as Adv. Mater. II. Berlin, Heidelberg: Springer Berlin-Heidelberg, 2011. P. 205. https://doi.org/10.1007/978-3-642-20018-2_20
  43. Santos-Vieira I.C.M.S., Lin Z., Rocha J. // Green Chem. 2022. V. 24. № 13. P. 5088. https://doi.org/10.1039/D2GC00654E
  44. Chapman D.M., Roe A.L. // Zeolites. 1990. V. 10. № 8. P. 730. https://doi.org/10.1016/0144-2449(90)90054-U
  45. Lihareva N., Kostov-Kytin V. // Bulg. Chem. Commun. 2014. V. 46. № 3. P. 569.
  46. Kim Y.K., Kim S., Kim Y. et al. // Appl. Surf. Sci. 2019. V. 493. P. 165. https://doi.org/10.1016/j.apsusc.2019.07.008
  47. Eom H.H., Kim H., Harbottle D. et al. // Sep. Purif. Technol. 2024. V. 330. P. 125550. https://doi.org/10.1016/j.seppur.2023.125550
  48. Milyutin V.V., Nekrasova N.A., Kaptakov V.O. et al. // Adsorption. 2023. V. 29. № 5–6. P. 323. https://doi.org/10.1007/s10450-023-00407-w
  49. Nekrasova N.A., Milyutin V. V., Kaptakov V.O. et al. // Inorganics. 2023. V. 11. № 3. P. 126. https://doi.org/10.3390/inorganics11030126

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Diffraction patterns of the obtained samples.

Жүктеу (250KB)
3. Fig. 2. SEM images of the sample surface and EDS maps of the elemental distribution.

Жүктеу (1MB)
4. Fig. 3. Low-temperature nitrogen adsorption–desorption isotherms and pore size distribution according to the DFT model (a – GTS-1; b – GTS-2; c – GTS-3; d – GTS-4).

Жүктеу (591KB)

© Russian Academy of Sciences, 2025