PERIFOCAL TISSUE REACTIONS TO IMPLANTATION OF THE SAMPLES OF HYDROGEL MATERIAL BASED ON POLYACRYLAMIDE WITH THE ADDITION OF THE CELLULOSE (AN EXPERIMENTAL STUDY)



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Tissue reactions to the grafting of samples of composite hydrogel based on polyacrylamide and cellulose of different origin (plant and bacterial) were studied in 48 laboratory outbred rats and 24 rabbits of chinchilla breed. The observations were carried out on Days 5, 14, 45 and 90 after placement of implants in the muscle, joint cavity, deep defects of the articular cartilage and subchondral bone. The study has revealed no migration and degradation of the samples. On Day 90, the signs of their biointegration (regardless of their nature) were detected in the muscles and in one case (the sample containing bacterial cellulose) in the cavity of the knee joint of the rat. The materials had good biocompatibility with muscle, cartilage and bone tissues, did not cause perifocal inflammation and effectively functioned as a prosthetic articular cartilage until the end of the study period.

Full Text

Restricted Access

About the authors

S. A. Bozhkova

R. R. Vreden Russian Research Institute of Traumatology and Orthopedics

Email: clinpharm-rniito@yandex.ru
Research Department of Prevention and Treatment of Wound Infection

A. L. Buyanov

RAS Institute of Macromolecular Compounds

Email: buyanov799@gmail.com
Laboratory of Hydrophilic Polymers

A. Yu. Kochish

R. R. Vreden Russian Research Institute of Traumatology and Orthopedics

Research Department of Prevention and Treatment of Wound Infection

V. P. Rumakin

R. R. Vreden Russian Research Institute of Traumatology and Orthopedics

Research Experimental-Morphological Department

A. K. Khripunov

RAS Institute of Macromolecular Compounds

Laboratory of Hydrophilic Polymers

G. I. Netyl’ko

R. R. Vreden Russian Research Institute of Traumatology and Orthopedics

Research Experimental-Morphological Department

R. Yu. Smyslov

RAS Institute of Macromolecular Compounds

Laboratory of Luminescence, Relaxational and Electrical Properties of Polymer Systems

A. V. Afanasyev

R. R. Vreden Russian Research Institute of Traumatology and Orthopedics

Research Department of Prevention and Treatment of Wound Infection

Ye. F Panarin

RAS Institute of Macromolecular Compounds; St. Petersburg State Polytechnical University

Email: office@spbstu.ru
Laboratory of Hydrophilic Polymers; Department of Medical Physics and Bioengineering

References

  1. Биосовместимость / Под ред. В. И. Севастьянова. М.: ИЦ ВНИИ геосистем, 1999.
  2. Буянов А. Л., Гофман И. В., Хрипунов А. К. и др. Высокопрочные биосовместимые гидрогели на основе полиакриламида и целлюлозы: синтез, механические свойства и перспективы применения в качестве искусственных заменителей хрящевых тканей // Высокомолек. соед. 2013. Серия А. Т. 55, № 5. С. 512-522.
  3. Майбородин И. В., Шевела А. И., Береговой Е. А. и др. Имплантация биодеградируемого полигидроксиалканоата в полость поврежденного сустава крысы // Фундаментальные исследования. Медицинские науки. 2011. № 10. С. 107-110.
  4. Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics // Int. J. Toxicol. 2005. Vol. 24, Suppl. 2. P. 21-50.
  5. Buckwalter J. A., Mankin H. A. Articular cartilage repair and transplantation // Arthritis Rheum. 1998. Vol. 41. P. 1331-1342.
  6. Buyanov A. L., Gofman I. V., Revelskaya L. G. et al. Anisotropic swelling and mechanical behavior of composite bacterial cellulose-(polyacrylamide or polyacrylamide-sodium polyacrylate) hydrogels // J. Mechanical Behav. Biomed. Materials. 2010. Vol. 3, № 1. P. 102-111.
  7. de Cassia Novaes W., Berg A. Experiences with a new non-biodegradable hydrogel (Aquamid): a pilot study // Aesth. Plast. Surg. 2003. Vol. 27. P. 376-380.
  8. Gotterbarm T., Richter W., Jung M. et al. An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects // Biomaterials. 2006. Vol. 27. P. 3387-3395.
  9. Hangody L., Fules P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience // J. Bone Joint Surg. Am. 2003. Vol. 85 (A). P. 25-32.
  10. Lee C., Grad S., Wimmer M., Alini M. The influence of mechanical stimuli on articular cartilage tissue engineering // Top. Tissue Engineering. 2006. Vol. 2. P. 1-32.
  11. Lewis J. L. Functional requirements: cartilage Functional Tissue Еngineering. New York: Springer, 2004. P. 117-126.
  12. Nakajima T., Kurokawa T., Furukawa H. et al. Super tough gels with a double network structure // Chinese J. Polym. Sci. 2009. Vol. 27, № 1. P. 1-9.
  13. Ochi M., Adachi N., Nobuto H. et al. Articular cartilage repair using tissue engineering technique-novel approach with minimally invasive procedure // Artif. Organs. 2004. Vol. 28. P. 28-32.
  14. Sciaretta F. V. 5 to 8 years follow-up of knee chondral defects treated by PVA-H hydrogel implants // Eur. Rev. Med. Pharmacol. Sci. 2013. Vol. 17. P. 3031-3038.
  15. Thioly-Bensoussan D. Non-hyaluronic acid fillers // Clin. Dermatol. 2008. Vol. 26, № 2. P. 160-176.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies