MORPHOLOGICAL ANALYSIS OF IN VIVO BIOCOMPATIBILITY OF PRINTED AURICLE PROSTHESIS



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective - to study in vivo biocompatibility of non-biodegradable printed polyurethane auricle prostheses, covered and not covered with an additional layer of a fibrous polyurethane matrix, by placing subcutaneous implants into rats and their subsequent histological and morphometric analysis at different time intervals after the implantation. Materials and methods. Polyurethane prostheses of the external human ear were created on the basis of a digital model using a 3D printer and then were covered by a thin polyurethane micro-fiber layer by means of an electrospinning. In vivo biocompatibility of the constructs obtained was studied 2 weeks, 1 month and 3 months after subcutaneous implantation into 18 sexually mature male Wistar rats. The intensity and nature of reaction of tissues adjacent to the prosthesis were assessed on histological sections. Morphometric analysis included measurement with an eyepiece micrometer of the thickness of the connective-tissue capsule formed around the prosthesis. Mechanical properties of all samples were evaluated using the laboratory device, equipped with strain gauge sensor. Results. Subcutaneously implanted ear prosthesуs were found to retain their size, shape and initial material properties and to cause the formation of a thin connective tissue capsule. Capsule thickness increased gradually during the selected observation periods from 17.6±2.3 μm by the end of the 2nd week to 25.6±4.0 μm by the end of the 1st month and up to 45.0±5.0 μm by the end of the 3rd month. In the absence of microfiber polyurethane coating, highly vascularized connective tissue with the signs of inflammation was found to grow through the pores into an implant. In implants with an additional polyurethane layer no similar ingrowths and signs of inflammation were found. However, in the contact zone of loose fibrous subcutaneous connective tissue with the polyurethane coating, the formation of giant multinucleated cells was observed. Conclusions. Non-biodegradable polyurethane prosthesis of the external ear developed demonstrated a satisfactory biocompatibility in vivo and a long-term cosmetic effect.

Full Text

Restricted Access

About the authors

P. A Karalkin

«3D Bioprinting Solutions»; P. Herzen Moscow Oncology Research Institute - branch of National Medical Research Radiology Center of the Ministry of Health of the Russian Federation

Email: pkaralkin@gmail.com
Laboratory of Biotechnological Research; Department of Prognosis of Conservative Treatment Efficiency 68/2, Kashirskoe highway, Moscow 115409, Russia

A. A. Gryadunova

«3D Bioprinting Solutions»

Email: zharnitskaya_anna@mail.ru
Laboratory of Biotechnological Research 68/2, Kashirskoe highway, Moscow 115409, Russia

F. D. A. S. Pereira

«3D Bioprinting Solutions»

Email: freddasp@gmail.com
Laboratory of Biotechnological Research 68/2, Kashirskoe highway, Moscow 115409, Russia

V. A Parfyonov

«3D Bioprinting Solutions»

Email: vapar@mail.ru
Laboratory of Biotechnological Research 68/2, Kashirskoe highway, Moscow 115409, Russia

V. A Kasyanov

Riga P.Stradins University; Riga Technical University

Email: kasyanov@latnet.lv
Laboratory of Biomechanics; Laboratory of Biomechanics 1 Kalku St, Riga LV-1658, Latvia

Ye. A. Bulanova

«3D Bioprinting Solutions»

Email: bulanova@bioprinting.ru
Laboratory of Biotechnological Research 68/2, Kashirskoe highway, Moscow 115409, Russia

Ye. V. Koudan

«3D Bioprinting Solutions»

Email: koudan@rambler.ru
Laboratory of Biotechnological Research 68/2, Kashirskoe highway, Moscow 115409, Russia

A. D. Knyazeva

«3D Bioprinting Solutions»

Email: knyazeva.a.d@yandex.ru
Laboratory of Biotechnological Research 68/2, Kashirskoe highway, Moscow 115409, Russia

N. S. Sergeyeva

P. Herzen Moscow Oncology Research Institute - branch of National Medical Research Radiology Center of the Ministry of Health of the Russian Federation

Email: prognoz.06@mail.ru
Department of Prognosis of Conservative Treatment Efficiency 3, 2nd Botkinskiy proezd, Moscow 125284, Russia

Yu. D. Khesuani

«3D Bioprinting Solutions»

Email: usefhesuani@yandex.ru
Laboratory of Biotechnological Research 68/2, Kashirskoe highway, Moscow 115409, Russia

V. A Mironov

«3D Bioprinting Solutions»

Email: vladimir.mironov54@gmail.com
Laboratory of Biotechnological Research 68/2, Kashirskoe highway, Moscow 115409, Russia

References

  1. Кудан Е. В., Перейра Ф. Д. А. С., Парфенов В. А., Касьянов В. А., Хесуани Ю. Д., Буланова Е. А., Миронов В. А. Распластывание тканевых сфероидов, сформированных из первичных фибробластов человека, на поверхности микроволокнистого электроспиннингового полиуретанового матрикса (сканирующее электронно-микроскопическое исследование) // Морфология, 2015. № 6. С. 70-74
  2. Bichara D. A., O’Sullivan N. A., Pomerantseva I., Zhao X., Sundback C. A., Vacanti J. P., Randolph M.A. The tissue-engineered auricle: past, present and future. Tissue Eng. Part B: Rev. 2012. Vol. 18, № 1. P. 51-61.
  3. Bly R. A., Bhrany A. D., Murakami C. S., Sie K. C. Microtia re con struction // Facial Plast. Surg. Clin. North Am. 2016. Vol. 24, № 4. P. 577-591.
  4. Efimov A. E., Agapova O. I., Parfenov V.A., Pereira F. D. A. S., Bu lanova E. A., Mironov V. A., Agapova I. I. Investigating the micro- and nanostructure of microfibrous bioсompatible polyurethane scaffold by scanning probe nanotomography // Nanotechnologies in Russia. 2015. Vol. 10, № 11-12. P. 925-929.
  5. Gendron C., Schwentker A., van Aalst J. A. Genetic advances in the understanding of microtia // J. Pediatr. Genetics. 2016. Vol. 5, № 4. P. 189-197.
  6. Huang C., Soenen S. J., Rejman J., Trekker T., Chengxun L., Lagae L., Ceelen W. P., Wilhelm C., Demeester J., De Smedt S. Mag netic electrospun fibers for cancer therapy // Adv. Functional Materials. 2012. Vol. 22. P. 2479-2486.
  7. Karchin A., Simonovsky F. I., Ratner B. D., Sanders J. E. Melt electrospinning of biodegradable polyurethane scaffolds // Acta Biomaterialia. 2011. Vol. 7, № 9. P. 3277-3284.
  8. Kasyanov V.A., Pereira F.D. A. S., Parfenov V.A., Kudan E. V., Bulanova E. A., Khesuani Yu. D., Mironov V.A. Development and Implantation of a biocompatible auricular prosthesis // Biomed. Eng. 2016. Vol. 49, № 6. P. 327-330.
  9. Koudan E. V., Bulanova E. A., Pereira F.D. A. S., Parfenov V.A., Kasyanov V.A., Khesuani U. J., Mironov V.A. Spreading of tissue spheroids on an electrospun polyurethane matrix // Biomed. Eng. 2016. Vol. 50, № 1. P. 1-4.
  10. Naumann A. Porous polyethylene implants for ear reconstruction of middle to high-grade ear defects // HNO. 2011. Vol. 59, № 2. P. 197-212.
  11. Wang K., Hou W. D., Wang X., Han C., Vuletic I., Su N., Zhang W. X., Ren Q. S., Chen L., Luo Y. Overcoming foreign-body reaction through nanotopography: biocompatibility and immunoisolation properties of a nanofibrous membrane // Biomaterials. 2016. Vol. 102. P. 249-258.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies