OSTEOCYTES AND THE PATHWAYS OF MECHANICAL HOMEOSTASIS OPTIMIZATION FROM THE POINT OF VIEW OF FUNCTIONAL OSTEOLOGY

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The aim of this work was to determine, on the basis of the results of authors' own research and literature data, the main pathways of osteocyte (OC) influence on the mechanical homeostasis of the skeleton. The following pathways of reorganization of the architecture of bone structures are postulated: at the ultrastructural level without direct cell participation, through the bone matrix synthesis by osteoblasts and OC, through bone matrix resorption by osteoclasts and OC, the latter being able to resorb the surrounding mineral and organic matrix both separately, and conjointly. This reorganization results in local changes of the mechanical characteristics of bones due to changes in: porosity of interstitial spaces, transport ability of the lacunar-canalicular system, porosity of the area of osteoblastic-osteoclastic remodeling, modeling of bone structures. From the point of view of adaptation theory it is highly significant that the subtle local control of bone structures is able to induce changes in the parameters of the mechanical environment, which, on the one hand, would correspond to OC metabolic requirements and, on the other hand, would support the parameters of body mineral homeostasis.

References

  1. Аврунин А. С., Паршин Л. К. и Аболин А. Б. Взаимосвязь морфофункциональных сдвигов на разных уровнях иерархической организации кортикальной кости при старении. Морфология, 2006, т. 129, вып. 3, с. 22-29.
  2. Аврунин А. С., Тихилов Р. М. и Климов А. В. Старение костной ткани. Теоретическое обоснование новых путей оптимизации процесса механотрансдукции. Морфология, 2005, т. 128, вып. 5, с. 19-28.
  3. Аврунин А. С. и Шубняков И. И. Иерархия структурно-функциональной организации скелета. В кн.: Остеопатия как система диагностики и лечения. СПб., изд. СЗО РАМН, 2007, с. 29-34.
  4. Берталанфи Л. Общая теория систем - краткий обзор. В кн.: Исследования по общей теории систем. М., Прогресс, 1969, с. 23-82.
  5. Денисов-Никольский Ю. И., Миронов С. П., Омельяненко Н. П. и Матвейчук И. В. Актуальные проблемы теоретической и клинической остеоартрологии. М., Изд-во ОАО «Типография „Новости"», 2005.
  6. Корнилов Н. В. и Аврунин А. С. Адаптационные процессы в органах скелета. СПб., Морсар, 2001.
  7. Семенов Н. В. Биохимические компоненты и константы жидких сред и тканей человека. М., Медицина, 1971.
  8. Хэм А. и Кормак Д. Костная ткань. В кн.: Гистология. Т. 3. М., Медицина, 1983, с. 19-131.
  9. Эшби У. Р. Конструкция мозга. М., Мир, 1962.
  10. Adachi T., Aonuma Y., Ito S. et al. Osteocyte calcium signaling response to bone matrix deformation. J. Biomechanics, 2009, v. 42, p. 2507-2512.
  11. Adachi T., Aonuma Y., Tairaa K. et al. Asymmetric intercellular communication between bone cells: propagation of the calcium signaling. Biochem. Biophys. Res. Commun., 2009, v. 389, p. 495-500.
  12. Adachi T., Aonuma Y., Tanaka M. et al. Calcium response in single osteocytes to locally applied mechanical stimulus: Differences in cell process and cell body. J. Biomechanics, 2009, v. 42, p. 1989-1995.
  13. Alcobendas M., Baud С.A. and Castanet J. Structural changes of the periosteocytic area in vipera aspis (l) (ophidia, viperidae) bone tissue in various physiological conditions. Calcif. Tissue Int., 1991, v. 49, p. 53-57.
  14. Amano K., Miyake K., Borke J. L. and McNeil P. L. Breaking biological barriers with a toothbrush. J. Dent. Res., 2007, v. 86, № 8, p. 769-774.
  15. Anderson E. J. and Knothe Tate M. L. Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes. J. Biomechanics, 2008, v. 41, p. 1736-1746.
  16. Arnold J. S., Frost H. M. and Buss R. O. The osteocyte as a bone pump. Clin. Orthop., 1971, v. 78, p. 47-55.
  17. Baud C. A. Morphologie et structure inframicroscopique des osteocytes. Acta anat., 1962, v. 51, p. 209-225.
  18. Belanger L. F. Osteocytic osteolysis. Calc. Tiss. Res., 1969, v. 4, p. 1-12.
  19. Belanger L. F. and Robichon J. Parathormone-induced osteolysis in dogs: a microradiographic and alpharadiographic survey. J. Bone Joint Surg., 1964, v. 46-A, № 5, p. 1008-1012.
  20. Bershadsky A. D., Balaban N. Q. and Geiger B. Adhesiondependent cell mechanosensittvity. Annu. Rev. Cell Dev. Biol., 2003, v. 19, p. 677-695.
  21. Bilezikian J. P., Brandi M. L., Rubin M. and Silverberg S. J. Primary hyperparathyroidism: new concepts in clinical, densitometric and biochemical features. J. Intern. Med., 2005, v. 257, p. 6-17.
  22. Brighton C. T., Fisher J. R.S., Levine S. E. et al. The biochemical pathway mediating the proliferative response of bone cells to a mechanical stimulus. J. Bone Joint Surg., 1996, v. 78-A, № 9, p. 1337-1347.
  23. Brown E. M. The extracellula Ca2+-sensing receptor central mediator of systemic calcium homeostasis. Annu. Rev. Nutr., 2000, v. 20, p. 507-533.
  24. Cheng B., Zhao S., Luo J. et al. Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 Cells. J. Bone Miner. Res., 2001, v. 16, № 2, p. 249-259.
  25. Cowin S. C. and Weinbaum S. Strain amplification in the bone mechanosensory system. Am. J. Med. Sci., 1998, v. 316, № 3, p. 184-188.
  26. Deysine M. Action of bone haemodynamics on lacuna-wall calcification. Lancet, 1973, v. 14, p. 805-807.
  27. Dodd J. S., Raleigh J. A. and Gross T. S. Osteocyte hypoxia: a novel mechanotransduction pathway Am. J. Physiol. Cell Physiol., 1999, v. 277, p. 598-602.
  28. Feng J. Q., Ward L. M., Liu S. et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat. Genet., 2006, v. 38, № 11, p. 1310-1315.
  29. Feng J. Q., Ye L. and Schiavi S. Do osteocytes contribute to phosphate homeostasis? Curr . Opin. Nephrol. Hypertens., 2009, v. 18, p. 285-291.
  30. Fernandez-Seara M. A., Wehrli S. L. and Wehrli F. W. Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance. Biophys. J., 2002, v. 82, № 1, Pt 1, p. 522-529.
  31. Frost H. M. A unique histological feature of vitamin D resistant rickets observed in four cases. Acta Orthop. Scand., 1963, v. 33, p. 220.
  32. Frost H. M. Defining osteopenias and osteoporoses: another view (with insights from a New Paradigm). Bone, 1997, v. 20, № 5, p. 385-391.
  33. Frost H. M. Seeking genetic causes of «osteoporosis»: insights of the Utah paradigm of skeletal physiology. Bone, 2001, v. 29, № 5, p. 407-412.
  34. Fyhrie D. P. and Kimura J. H. NACOB presentation keynote lecture. Cancellous bone biomechanics. North American Congress on Biomechanics. J. Biomech., 1999, v. 32, № 11, p. 1139-1148.
  35. Hillsley V. and Frangos J. A. Review: bone tissue engineering: the role of interstitial fluid flow. Biotechnol. Bioengineering, 1994, v. 43, № 7, p. 573-581.
  36. Ishida H., Bellows C. G., Aubin J. E. and Heersche J. N. Characterization of the 1,25-(OH)2D3-induced inhibition of bone nodule formation in long-term cultures of fetal rat calvaria cells. Endocrinology, 1993, v. 132, № 1, p. 61-66.
  37. Jowsey J. and Riggs B. L. Mineral metabolism in osteocytes. Mayo Clin. Proc., 1964, v. 39, № 7, p. 480-484.
  38. Kacem A. and Meunier F. J. Halastatic demineralization in the vertebrae of Atlantic salmon, during their spawning migration J. Fish Biol., 2003, v. 63, p. 1122-1130.
  39. Knothe Tate M. L., Niederer P. and Knothe U. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone, 1998, v. 22, № 2, p. 107-117.
  40. Li W., You L., Schaffler M. B. and Wang L. The dependency of solute diffusion on molecular weight and shape in intact bone. Bone, 2009, v. 45, № 5, p. 1017-1023.
  41. Lipp W. Neuuntersuchungen des Knochengewebes (Morphologie, Histochemie und Beeinflussung durch das periphere vegetative Nervensystem, durch Fermente und Hormone) Acta Anat., 1954, Bd. 20, S. 162-200.
  42. Lipp W. Neuuntersuchungen des Knochengewebes II. Histologisch erfaβbare Lebensäuβerungen der Knochenzellen. Acta Anat., 1954, Bd. 22, S. 151-201.
  43. Lipp W. Neuuntersuchungen des Knochengewebes. III. Histologisch erfaßbare Lebensäußerungen der Osteozyten in embryonalen Knochen des Menschen. Anat. Anz., 1956, Bd. 102, H. 18/21, S. 361-372.
  44. Martin R. B. Toward a unifying theory of bone remodeling. Bone, 2000, v. 26, № 1, p. 1-6.
  45. Mullender M., EI Haj A. J., Yang Y. et al. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med. Biol. Eng. Comput., 2004, v. 42, p. 14-21.
  46. Neuman W. F., Terepka A. R., Canas P. and Triffitt J. T. The cycling concept of exchange in bone. Calcif. Tissue Res., 1968. v. 2, № 3, p. 262-270.
  47. Nichols G. and Rogers P. Mechanisms for the transfer of calcium into and out of the skeleton. Pediatrics, 1971, v. 47, № 1, part II, p. 211.
  48. Okada S., Yoshida S., Ashrafi S. H. and Schraufnagel D. E. The canalicular structure of compact bone in the rat at different ages. Microsc. Microanal. 2002, v. 8, № 2, p.104-115.
  49. Orellana M. F., Borke J. L. and Major P. W. Cell wounding as a mechanism for mechanotransduction in orthodontic tooth movement in rats. In: Biological Mechanisms of Tooth Movement and Craniofacial Adaptation. Harvard Society for the Advancement of Orthodontics, Boston, Massachusetts, USA, p. l-9, 2004.
  50. Orellana M. F., Smith A. K., Waller J. L. at al. Plasma membrane disruption in orthodontic tooth movement in rats. J. Dent. Res., 2002, v. 81, № 1, p. 43-47.
  51. Orellana-Lezcano M. F., Major P. W., McNeil P. L. et al. Temporary loss of plasma membrane integrity in orthodontic tooth movement. Orthod. Craniofac. Res., 2005, v. 8, p. 106-113.
  52. Palumbo C., Palazzini S., Zaffe D. and Marotti G. Osteocyte differentiation in the tibia of newborn rabbit: an ultrastractural study of the formation of cytoplasmic processes. Acta Anat., 1990, v. 137, p.350-358.
  53. Petrov N. and Pollack S. R. Comparative analysis of diffusive and stress induced nutrient transport efficiency in the lacunarcanalicular system of osteons. Biorheology, 2003, v. 40, № 1-3, p. 347-353.
  54. Remagen W., Caesar R. and Heuck F. Elektronenmikroskopische und mikroradiographische Befunde am Knochen der mit Dihydrotachysterin behandelten Ratte. Virch. Arch. Abt. A. Path. Anat., 1968, Bd. 345, H. 3, S. 245-254.
  55. Remagen W., Hohling H. J. and Hall T. A. Electron microscopical and microprobe observations on the cell sheath of stimulated osteocytes. Calc. Tissue. Res., 1969, v. 4, p. 60-68.
  56. Sietsema W. K. Animal models of cortical porosity. Bone, 1995, v. 17, № 4, Suppl., p. 297S-305S.
  57. Skerry T. M., Bitensky L., Chayen J. and Lanyon L. E. Loadingrelated reorientation of bone proteoglycan in vivo. Strain memory in bone tissue? J. Orthop Res., 1988, v. 6, № 4, p. 547-551.
  58. Skerry T. M., Bitensky L., Chayen J. and Lanyon L. E. Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J. Bone Miner. Res., 1989, v. 4, № 5, p. 783-788.
  59. Skerry T. M., Suswillo R., El Haj A. J. et al. Load-induced proteoglycan orientation in bone tissue in vivo and in vitro. Calcif. Tissue Int., 1990, v. 46, p. 318-326.
  60. Skerry T. M. and Suva L. J. Investigation of the regulation of bone mass by mechanical loading: from quantitative cytochemistry to gene array. Cell Biochem. Funct., 2003, v. 21, p. 223-229.
  61. Skerry T. M. and Taylor A. F. Glutamate signalling in bone. Curr. Pharmaceutical Design., 2001, v. 7, № 8, p. 737-750.
  62. Tami A. E., Nasser P., Verborgt O. et al. The role of interstitial fluid flow in the remodeling response to fatigue loading. J. Bone Miner. Res., 2002, v. 17, № 11, p. 2030-2037.
  63. Tami A. E., Schaffler M. B. and Knothe Tate M. L. Probing the tissue to subcellular level structure underlying bone's molecular sieving function. Biorheology, 2003, v. 40, № 6, p. 577-590.
  64. Tanaka T. 1979 - цит. по N. Petrov and S. R. Pollack, 2003.
  65. Tanaka T. 1984 - цит. по N. Petrov and S. R. Pollack, 2003.
  66. Tanaka-Kamioka K., Kamioka H., Ris H. and Lim.S. 1998 - цит. по N. Petrov and S. R. Pollack, 2003.
  67. Tfelt-Hansen J. and Brown E. M. The calcium-sensing receptor in normal physiology and pathophysiology: a review. Crit. Rev. Clin. Lab. Sci., 2005, v. 42, № 1, p. 35-70.
  68. Turner A. S., Mallinckrodt С.H., Alvis M. R. and Bryant H. U. Dose-response effects of estradiol implants on bone mineral density in ovariectomized ewes. Bone, 1995, v. 17, № 4, Suppl., p. 421S-427S.
  69. Turner C. H. Homeostatic control of bone structure: an application feedback theory. Bone, 1991, v. 12, № 3, p. 203-217.
  70. Turner C. H. Editorial: do estrogens increase bone formation? Bone, 1991, v. 12, № 5, p. 305-306.
  71. Turner C. H. and Forwood M. R. What role does the osteocyte network play in bone adaptation? Bone, 1995, v. 16, № 3, p. 283-285.
  72. Turner C. H., Takano Y. and Owan I. Aging changes mechanical loading thresholds for bone formation in rats. J. Bone Miner. Res., 1995, v. 10, № 10, p.1544-1549.
  73. Zaman G., Cheng M. Z., Jessop H. L. et al. Mechanical strain activates estrogen response elements in bone cells. Bone, 2000, v. 27, № 2, p. 233-239.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies