CHANGES OF Y NEURON FORMATION IN CAT VISUAL SYSTEM DURING EARLY POSTNATAL ONTOGENESIS UNDER THE INFLUENCE OF BINOCULAR RHYTHMIC LIGHT STIMULATION



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

To examine the effect of an artificial rhythmic light stimulation on the development of structural and functional organization of Y neurons of cat visual system in the ontogenesis, the distribution of the neurons immunopositive to SMI-32 antibodies was studied in lateral geniculate nucleus (LGN) and posteromedial suprasylvian area (PMLS). Laminar distribution of SMI-32-positive neurons and neuronal body profile area were analyzed in intact animals (n=4) and in kittens (n=4) grown under conditions of rhythmic light stimulation with15 Hz frequency for 4 months. In light-stimulated animals, changes in laminar distribution of immunopositive neurons were detected in both LGN (decline in the percentage of the immunopositive cells in C M layer) and in PMLS area (decrease in cell count in layer V). Morphometric analysis has shown the significant reduction of cell body profile area in immunopositive neurons in light-stimulated kittens only in layers III and V of PMLS area. The data obtained suggest that Y channel functional disturbances in light-stimulated animals are caused by the structural and metabolic changes detected in Y neurons.

Full Text

Restricted Access

About the authors

N. S. Merkuliyeva

RAS I. P.Pavlov Institute of Physiology

Email: mer-natalia@yandex.ru

A. A. Mikhalkin

RAS I. P.Pavlov Institute of Physiology

Email: michalkin@mail.ru

N. I. Nikitina

RAS I. P.Pavlov Institute of Physiology

D. A Nefyodov

RAS I. P.Pavlov Institute of Physiology

Email: den-nefedov86@rambler.ru

F. N. Makarov

RAS I. P.Pavlov Institute of Physiology

Email: felixmakarov@mail.ru

References

  1. Меркульева Н. С., Михалкин А. А., Никитина Н. И. и Макаров Ф. Н. Развитие связей первичной зрительной коры с центром анализа движений: роль зрительного окружения. Морфология, 2011, т. 140, вып. 6, с. 24–31.
  2. Anderson J. C., Da Costa N. M. and Martin K. A.C. The W cell pathway to cat primary visual cortex. J. Comp. Neurol., 2009, v. 516, p. 20–35.
  3. Berson D. M. Cat lateral suprasylvian cortex: Y-cell inputs and corticotectal projection. J. Neurophysiol., 1985, v. 53, p. 544–556.
  4. Bickford M. E., Guido W. and Godwin D. W. Neurofilament proteins in Y-cells of the cat lateral geniculate nucleus: normal expression and alteration with visual deprivation. J. Neurosci., 1998, v. 18, p. 6549–6557.
  5. Burnat K., Vandenbussche E. and Zernicki B. Global motion detection is impaired in cats deprived early of patterned vision. Behav. Brain Res., 2002, v. 134, p. 59–65.
  6. Carden W. B., Guido W., Ziburkus J. et al. A novel means of Y cell identification in the developing lateral geniculate nucleus of the cat. Neurosci. Letters, 2000, v. 295, p. 5–8.
  7. Cynader H., Berman N. and Hein A. Cats reared in stroboscopic illumination: effects on receptive fields in visual cortex. Proc. Natl. Acad. Sci. USA, 1973, v. 70, p. 1353–1354.
  8. Daw N. W. Visual development. New York, Springer, 2006.
  9. DeAngelis G. C., Ohzawa I. and Freeman R. D. Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. I. General characteristics and postnatal development. J. Neurophysiol., 1993, v. 69, p. 1091–1117.
  10. Dreher B., Wang C., Turlejski K. J. et al. Areas PMLS and 21a of cat visual cortex: two functionally distinct areas. Cerebral Cortex, 1996, v. 6, p. 585–599.
  11. Duffy K. R. and Livingstone M. S. Loss of neurofilament labeling in the primary visual cortex of monocularly deprived monkeys. Cerebral Cortex, 2005, v. 15, p. 1146–1154.
  12. Garraghty P. E., Roe A. and Sur M. Specification of retinogeniculate X and Y axon arbors in cat: fundamental differences in developmental programs. Dev. Brain Res., 1998, v. 107, p. 227–231.
  13. Guillery R. W. A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat. J. Comp. Neurol., 1966, v. 128, p. 21–50.
  14. Kawasaki H., Crowley J. C., Livesey F. J. and Katz L. C. Molecular organization of the ferret visual thalamus. J. Neurosci., 2004, v. 24, p. 9962–9970.
  15. Kennedy H. and Orban G. A. Response properties of visual cortical neurons in cats reared in stroboscopic illumination. J. Neuro physiol., 1983, v. 49, p. 686–704.
  16. Kogan C. S., Zangenehpour S. and Chaudhuri A. Developmental profiles of SMI-32 immunoreactivity in monkey striate cortex. Dev. Brain Res., 2000, v. 119, p. 85–95.
  17. Kumar S., Yin X., Trapp B.D et al. Relating interactions between neurofilaments to the structure of axonal neurofilament distributions through polymer brush models. Biophys. J., 2002, v. 82, p. 2360–2372.
  18. Lomber S. G., MacNeil M. A. and Payne B. R. Amplification of thalamic projections to middle suprasylvian cortex following ablation of immature primary visual cortex in the cat. Cerebr. Cortex, 1995, v. 2, p. 166–191.
  19. McCall M. A., Tong L. and Spear P.D. Development of neuronal responses in cat posteromedial lateral suprasylvian visual cortex. Brain Res., 1988, v. 447, p. 67–78.
  20. O’Leary T. P., Kutcher M. R., Mitchell D. E. and Duffy K. R. Re covery of neurofilament following early monocular deprivation. Front. Neurosci., 2012, v. 6, p. 1–11.
  21. Pasol J., Feuer W., Yang C. et al. Phosphorylated neurofilament heavy chain correlations to visual function, optical coherence tomography, and treatment. Multiple Sclerosis Int. J., 2010, v. 2010, p. 1–15.
  22. Rosenquist A. C. Connections of visual cortical areas in the cat. In: Cerebral Cortex. New York, London, Plenum Press, 1985, p. 81–117.
  23. Sireteanu R. and Best J. Squint-induced modification of visual receptive fields in the lateral suprasylvian cortex of the cat: binocular interaction, vertical effect and anomalous correspondence. Eur. J. Neurosci., 1992, v. 4, p. 235–242.
  24. Sternberger L. A. and Sternberger N. H. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc. Natl. Acad. Sci. USA, 1983, v. 80, p. 6126–6130.
  25. Stone J. Parallel processing in the visual system. New York, London, Plenum Press, 1983.
  26. Sur M. Development and plasticity of retinal X and Y axon terminations in the cat’s lateral geniculate nucleus. Brain Behav. Evol., 1988, v. 31, p. 243–251.
  27. Wilson P. D., Rowe M. H. and Stone J. Properties of relay cells in cat’s lateral geniculate nucleus: a comparison of W-cells with X- and Y-cells. J. Neurophysiol., 1976, v. 39, p. 1193–1209.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies