TISSUE REACTIONS TO THE USE OF IMPLANTS MANUFACTURED FROM LACTIC ACID POLYMERS



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Recent literature on the morphological results of the application of polymers produced from lactic acid (polylactides - PLA), contains a plethora of experimental and clinical data on the efficiency and safety of their use for the medico-biological purposes. However, the question on the actual rate of biological disintegration of PLA materials remains unanswered. There are conflicting views on the inflammatory reaction ranging from a complete negation of an inflammatory response to PLA implantation up to the reports describing the expressed aseptic inflammatory reactions caused by presence of this material in tissues. Some researchers report the total absence of the foreign-body reactions to this class of implants, while some others indicate the obligatory formation of the foreign-body giant cells. Further research is necessary to precisely predict degradation processes of and to detect all the potential risks associated with the use of PLA-based materials.

Full Text

Restricted Access

About the authors

I. V. Maiborodin

RAMS Siberian Branch Institute of Chemical Biology and Fundamental Medicine

Email: imai@mail.ru

I. V. Kuznetsova

RAMS Siberian Branch Institute of Chemical Biology and Fundamental Medicine

A. I. Shevela

RAMS Siberian Branch Institute of Chemical Biology and Fundamental Medicine

M. I. Barannik

RAMS Siberian Branch Institute of Chemical Biology and Fundamental Medicine

A. A. Manayev

RAMS Siberian Branch Institute of Chemical Biology and Fundamental Medicine

V. I. Maiborodina

RAMS Siberian Branch Institute of Chemical Biology and Fundamental Medicine

References

  1. Кулаков А. А., Григорьян А. С., Кротова Л. И. и др. Процессы регенерации в костных дефектах при имплантации в них композиционного материала различной плотности на основе полилактида, наполненного гидроксиапатитом. Стоматология, 2009, т. 88, № 1, с. 17-23.
  2. Майбородин И. В., Кузнецова И. В., Береговой Е. А. и др. Тканевые реакции при деградации имплантатов из полилактида в организме. Морфология, 2013, т. 143, вып. 3, с. 59-65.
  3. Марквичева Е. А., Антонов Е. Н., Попова А. В. и др. Биодеградируемые полимерные микрочастицы с экстрактами лекарственных растений: получение с помощью сверхкритического диоксида углерода и применение для репарации тканей. Биомед. химия, 2009, т. 55, № 4, с. 479-488.
  4. Alst van M., Eenink M. J., Kruft M. A. and Tuil van R. ABC’s of bioabsorption: application of lactide based polymers in fully resorbable cardiovascular stents. EuroIntervention, 2009, v. 5, Suppl F, p. F23-F27.
  5. Ashammakhi N., Papp A., Sayed R. et al. Histological evaluation of poly(L-lactide/epsilon-caprolactone) membrane implanted subcutaneously in rats. Ann. Chir. Gynaecol., 1999, v. 88, № 4, p. 313-317.
  6. Bähr W., Stricker A., Gutwald R. and Wellens E. Biodegradable osteosynthesis material for stabilization of midface fractures: experimental investigation in sheep. J. Craniomaxillofac. Surg., 1999, v. 27, № 1, p. 51-57.
  7. Barber F.A., Dockery W.D. and Hrnack S. A. Long-term degradation of a poly-lactide co-glycolide/β-tricalcium phosphate biocomposite interference screw. Arthroscopy, 2011, v. 27, № 5, p. 637-643.
  8. Beumer G. J., Blitterswijk van C. A. and Ponec M. Biocompatibility of a biodegradable matrix used as a skin substitute: an in vivo evaluation. J. Biomed. Mater. Res., 1994, v. 28, № 5, p. 545-552.
  9. Bommana M. M., Kirthivasan B. and Squillante E. In vivo brain microdialysis to evaluate FITC-dextran encapsulated immunopegylated nanoparticles. Drug Deliv, 2012, v. 19, № 6, p. 298-306.
  10. Bos R. R., Rozema F. R., Boering G. et al. Degradation of and tissue reaction to biodegradable poly(L-lactide) for use as internal fixation of fractures: a study in rats. Biomaterials, 1991, v. 12, № 1, p. 32-36.
  11. Bünger C. M., Grabow N., Sternberg K. et al. Iliac anastomotic stenting with a biodegradable poly-L-lactide stent: a preliminary study after 1 and 6 weeks. J. Endovasc. Ther., 2006, v. 13, № 4, p. 539-548.
  12. Carlyle W. C., McClain J. B., Tzafriri A. R. et al. Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug. J. Control Release, 2012, v. 162, № 3, p. 561-567.
  13. Chaney E. J., Tang L., Tong R. et al. Lymphatic biodistribution of polylactide nanoparticles. Mol. Imaging, 2010, v. 9, № 3, p. 153-162.
  14. Chen F., Huang P., Zhu Y. J. et al. Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging. Biomaterials, 2012, v. 33, № 27, p. 6447-6455.
  15. Chorny M., Mishaly D., Leibowitz A. et al. Site-specific delivery of dexamethasone from biodegradable implants reduces formation of pericardial adhesions in rabbits. J. Biomed. Mater. Res. A, 2006, v. 78, № 2, p. 276-282.
  16. Contreras J., Xie J., Chen Y. J. et al. Intracellular uptake and trafficking of difluoroboron dibenzoylmethane-polylactide nanoparticles in HeLa cells. ACS Nano, 2010, v. 4, № 5, p. 2735- 2747.
  17. Day R. M., Boccaccini A. R., Maquet V. et al. In vivo characterisation of a novel bioresorbable poly(lactide-co-glycolide) tubular foam scaffold for tissue engineering applications. J. Mater. Sci. Mater. Med., 2004, v. 15, № 6, p. 729-734.
  18. Destache C. J., Belgum T., Goede M. et al. Antiretroviral release from poly(DL-lactide-co-glycolide) nanoparticles in mice. J. Antimicrob. Chemother., 2010, v. 65, № 10, p. 2183-2187.
  19. Ding Y., Song Y. and Wang J. Effect of absorbable poly-DLlactide rods on experimental fracture healing. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2003, v. 20, № 4, p. 708-712.
  20. Dong M., Mürdter T. E., Philippi C. et al. Pulmonary delivery and tissue distribution of aerosolized antisense 2’-O-Methyl RNA containing nanoplexes in the isolated perfused and ventilated rat lung. Eur. J. Pharm. Biopharm., 2012, v. 81, № 3, p. 478-485.
  21. Dong M., Philippi C., Loretz B. et al. Tissue slice model of human lung cancer to investigate telomerase inhibition by nanoparticle delivery of antisense 2’-O-methyl-RNA. Int. J. Pharm., 2011, v. 419, № 1-2, p. 33-42.
  22. Donnelly R. F., Morrow D. I., Fay F. et al. Microneedle-mediated intradermal nanoparticle delivery: Potential for enhanced local administration of hydrophobic pre-formed photosensitisers. Photodiagnosis Photodyn. Ther., 2010, v. 22, № 17, p. 222-231.
  23. Eitenmüller J., David A., Pommer A. and Muhr G. Surgical treatment of ankle joint fractures with biodegradable screws and plates of poly-l-lactide. Chirurg, 1996, v. 67, № 4, p. 413-418.
  24. Eitenmüller J., Gerlach K. L., Schmickal T. and Muhr G. Semirigid plate osteosyntheses using absorbable polymers as temporary implants. II. Animal experiment studies. Chirurg, 1987, v. 58, № 12, p. 831-839.
  25. Farid W. O., McCallum D., Tait R. J. et al. Minor pathological changes are induced by naltrexone-poly(DL-lactide) implants in pregnant rats. J. Biomed. Mater. Res. A, 2009, v. 91, № 4, p. 964-974.
  26. Fennis J. P., Stoelinga P.J., Merkx M. A. and Jansen J. A. Reconstruction of the mandible with a poly(D,L-lactide) scaffold, autogenous corticocancellous bone graft, and autogenous platelet-rich plasma: an animal experiment. Tissue Eng., 2005, v. 11, № 7-8, p. 1045-1053.
  27. Giovino C., Ayensu I., Tetteh J. and Boateng J. S. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int. J. Pharm., 2012, v. 428, № 1-2, p. 143-151.
  28. Gogolewski S., Jovanovic M., Perren S. M. et al. Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J. Biomed. Mater. Res., 1993, v. 27, № 9, p. 1135-1148.
  29. Hasegawa Y., Sakano S., Iwase T. and Warashina H. The long-term behavior of poly-L-lactide screws in a minipig fracture model: preliminary report. J. Biomed. Mater. Res., 2002, v. 63, № 6, p. 679-685.
  30. Heidemann W., Jeschkeit S., Ruffieux K. et al. Degradation of poly(D,L)lactide implants with or without addition of calciumphosphates in vivo. Biomaterials, 2001, v. 22, № 17, p. 2371-2381.
  31. Hietala E. M., Salminen U. S., Ståhls A. et al. Biodegradation of the copolymeric polylactide stent. Long-term follow-up in a rabbit aorta model. J. Vasc. Res., 2001, v. 38, № 4, p. 361-369.
  32. Holder W. D. Jr, Gruber H. E., Moore A. L. et al. Cellular ingrowth and thickness changes in poly-L-lactide and polyglycolide matrices implanted subcutaneously in the rat. J. Biomed. Mater. Res., 1998, v. 41, № 3, p. 412-421.
  33. Hu K., Shi Y., Jiang W. et al. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson’s disease. Int. J. Pharm., 2011, v. 415, № 1-2, p. 273-283.
  34. Hulse G. K., Low V. H., Stalenberg V. et al. Biodegradability of naltrexone-poly(DL) lactide implants in vivo assessed under ultrasound in humans. Addict Biol., 2008, v. 13, № 3-4, p. 364-372.
  35. Hulse G. K., Stalenberg V., McCallum D. et al. Histological changes over time around the site of sustained release naltrexone-poly(DL-lactide) implants in humans. J. Control Release, 2005, v. 108, № 1, p. 43-55.
  36. Iwasaki Y., Sawada S., Ishihara K. et al. Reduction of surface-induced inflammatory reaction on PLGA/MPC polymer blend. Biomaterials, 2002, v. 23, № 18, p. 3897-3903.
  37. Jabbarzadeh E., Deng M., Lv Q. et al. VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater., 2012, v. 100, № 8, p. 2187-2196.
  38. Jansen K., Meek M. F., Werff van der J. F. et al. Long-term regeneration of the rat sciatic nerve through a biodegradable poly(DL-lactide-epsilon-caprolactone) nerve guide: tissue reactions with focus on collagen III/IV reformation. J. Biomed. Mater. Res. A, 2004, v. 69, № 2, p. 334-341.
  39. Jewell C. M., López S. C. and Irvine D. J. In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc. Natl. Acad. Sci. USA, 2011, v. 108, № 38, p. 15745-15750.
  40. Jong de W. H., Eelco Bergsma J., Robinson J. E. and Bos R. R. Tissue response to partially in vitro predegraded poly-L-lactide implants. Biomaterials, 2005, v. 26, № 14, p. 1781-1791.
  41. Kang F. and Singh J. Preparation, in vitro release, in vivo absorption and biocompatibility studies of insulin-loaded microspheres in rabbits. AAPS PharmSciTech, 2005, v. 6, № 3, p. E487-E494.
  42. Kilicoglu O., Demirhan M., Akman S. et al. Failure strength of bioabsorbable interference screws: effects of in vivo degradation for 12 weeks. Knee Surg. Sports Traumatol. Arthrosc., 2003, v. 11, № 4, p. 228-234.
  43. Kirthivasan B., Singh D., Bommana M. M. et al. Active brain targeting of a fluorescent P-gp substrate using polymeric magnetic nanocarrier system. Nanotechnology, 2012, v. 23, № 25, p. 255102.
  44. Kontio R., Ruuttila P., Lindroos L. et al. Biodegradable polydioxanone and poly(l/d)lactide implants: an experimental study on peri-implant tissue response. Int. J. Oral Maxillofac. Surg., 2005, v. 34, № 7, p. 766-776.
  45. Laitinen O., Pihlajamäki H., Sukura A. and Böstman O. Transmission electron microscopic visualization of the degradation and phagocytosis of a poly-L-lactide screw in cancellous bone: a long-term experimental study. J. Biomed. Mater. Res., 2002, v. 61, № 1, p. 33-39.
  46. Landes C. A., Kriener S., Menzer M. and Kovàcs A. F. Resorbable plate osteosynthesis of dislocated or pathological mandibular fractures: a prospective clinical trial of two amorphous L-/DL-lactide copolymer 2-mm miniplate systems. Plast. Reconstr. Surg., 2003, v. 111, № 2, p. 601-610.
  47. Leiggener C. S., Curtis R., Müller A. A. et al. Influence of copolymer composition of polylactide implants on cranial bone regeneration. Biomaterials, 2006, v. 27, № 2, p. 202-207.
  48. Levy Y., Paz A., Yosef R. B. et al. Biodegradable inflatable balloon for reducing radiation adverse effects in prostate cancer. J. Biomed. Mater. Res. B Appl. Biomater., 2009, v. 91, № 2, p. 855-867.
  49. Lewandrowski K. U., Bondre S. P., Wise D. L. and Trantolo D. J. Healing of osteochondral osteotomies after fixation with a hydroxyapatite-buffered polylactide. A histomorphometric and radiographic study in rabbits. Biomed. Mater. Eng., 2002, v. 12, № 3, p. 259-270.
  50. Liang C. Z., Li H., Tao Y. Q. et al. Dual delivery for stem cell differentiation using dexamethasone and bFGF in/on polymeric microspheres as a cell carrier for nucleus pulposus regeneration. J. Mater. Sci. Mater. Med., 2012, v. 23, № 4, p. 1097-1107.
  51. Liang C., Yang Y., Ling Y. et al. Improved therapeutic effect of folate-decorated PLGA-PEG nanoparticles for endometrial carcinoma. Bioorg. Med. Chem., 2011, v. 19, № 13, p. 4057-4066.
  52. Lieger O., Schaller B., Zix J. et al. Repair of orbital floor fractures using bioresorbable poly-L/DL-lactide plates. Arch. Facial Plast. Surg., 2010, v. 12, № 6, p. 399-404.
  53. Liu D., Liu S., Jing X. et al. Necrosis of cervical carcinoma by dichloroacetate released from electrospun polylactide mats. Biomaterials, 2012, v. 33, № 17, p. 4362-4369.
  54. Liu J., Wong H. L., Moselhy J. et al. Targeting colloidal particulates to thoracic lymph nodes. Lung Cancer, 2006, v. 51, № 3, p. 377-386.
  55. Liu Q., Shen Y., Chen J. et al. Nose-to-brain transport pathways of wheat germ agglutinin conjugated PEG-PLA nanoparticles. Pharm. Res., 2012, v. 29, № 2, p. 546-558.
  56. Loebsack A. B., Halberstadt C. R., Holder W. D. Jr et al. The development of an embedding technique for polylactide sponges. J. Biomed. Mater. Res., 1999, v. 48, № 4, p. 504-510.
  57. Ma J., He X. and Jabbari E. Osteogenic differentiation of marrow stromal cells on random and aligned electrospun poly(L-lactide) nanofibers. Ann. Biomed. Eng., 2011, v. 39, № 1, p. 14-25.
  58. Ma X., Wang H., Jin S et al. Construction of paclitaxel-loaded poly (2-hydroxyethyl methacrylate)-g-poly(lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine copolymer nanoparticle delivery system and evaluation of its anticancer activity. Int. J. Nanomedicine, 2012, v. 7, p. 1313-1328.
  59. Mainil-Varlet P., Rahn B. and Gogolewski S. Long-term in vivo degradation and bone reaction to various polylactides. 1. One-year results. Biomaterials, 1997, v. 18, № 3, p. 257-266.
  60. Martin C., Winet H. and Bao J. Y. Acidity near eroding polylactide-polyglycolide in vitro and in vivo in rabbit tibial bone chambers. Biomaterials, 1996, v. 17, № 24, p. 2373-2380.
  61. Mata E., Igartua M., Patarroyo M. E. et al. Enhancing immunogenicity to PLGA microparticulate systems by incorporation of alginate and RGD-modified alginate. Eur. J. Pharm. Sci., 2011, v. 44, № 1-2, p. 32-40.
  62. Matsusue Y., Hanafusa S., Yamamuro T. et al. Tissue reaction of bioabsorbable ultra high strength poly (L-lactide) rod. A long-term study in rabbits. Clin. Orthop. Relat. Res., 1995, № 317, p. 246-253.
  63. Matsusue Y., Nakamura T., Iida H. and Shimizu K. A long-term clinical study on drawn poly-L-lactide implants in orthopaedic surgery. J. Long Term. Eff. Med. Implants, 1997, v. 7, № 2, p. 119-137.
  64. Matsusue Y., Yamamuro T., Oka M. et al. In vitro and in vivo studies on bioabsorbable ultra-high-strength poly(L-lactide) rods. J. Biomed. Mater. Res., 1992, v. 26, № 12, p. 1553-1567.
  65. Miller R. A., Brady J. M. and Cutright D. E. Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios. J. Biomed. Mater. Res., 1977, v. 11, № 5, p. 711-719.
  66. Mittal G., Carswell H., Brett R. et al. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer’s pathology. J. Control Release, 2011, v. 150, № 2, p. 220-228.
  67. Mondon K., Zeisser-Labouèbe M., Gurny R. and Möller M. Novel cyclosporin A formulations using MPEG-hexyl-substituted polylactide micelles: a suitability study. Eur. J. Pharm. Biopharm., 2011, v. 77, № 1, p. 56-65.
  68. Mueller A. A., Rahn B. A., Gogolewski S. and Leiggener C. S. Early dural reaction to polylactide in cranial defects in rabbits. Pediatr. Neurosurg., 2005, v. 41, № 6, p. 285-291.
  69. Niu C., Wang Z., Zuo G. et al. Poly(Lactide-co-glycolide) ultrasonographic microbubbles carrying Sudan black for preoperative and intraoperative localization of lymph nodes. Clin. Breast Cancer, 2012, v. 12, № 3, p. 199-206.
  70. Nordström P., Pihlajamäki H., Toivonen T. et al. Tissue response to polyglycolide and polylevolactide pins in osteotomized cancellous bone. Clin. Orthop. Relat. Res., 2001, v. 382, p. 247-257.
  71. Päivärinta U., Böstman O., Majola A. et al. Intraosseous cellular response to biodegradable fracture fixation screws made of polyglycolide or polylactide. Arch. Orthop. Trauma. Surg., 1993, v. 112, № 2, p. 71-74.
  72. Patil Y. B., Toti U. S., Khdair A. et al. Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials, 2009, v. 30, № 5, p. 859-866.
  73. Peltoniemi H. H., Hallikainen D., Toivonen T. et al. SR-PLLA and SR-PGA miniscrews: biodegradation and tissue reactions in the calvarium and dura mater. J. Craniomaxillofac. Surg., 1999, v. 27, № 1, p. 42-50.
  74. Pihlajamäki H., Böstman O., Manninen M. et al. Tissue-implant interface at an absorbable fracture fixation plug made of polylactide in cancellous bone of distal rabbit femur. Arch. Orthop. Trauma Surg., 1994, v. 113, № 2, p. 101-105.
  75. Pihlajamäki H., Böstman O., Tynninen O. and Laitinen O. Long-term tissue response to bioabsorbable poly-L-lactide and metallic screws: an experimental study. Bone, 2006, v. 39, № 4, p. 932-937.
  76. Pistner H., Gutwald R., Ordung R. et al. Poly(L-lactide): a long-term degradation study in vivo. I. Biological results. Biomaterials, 1993, v. 14, № 9, p. 671-677.
  77. Pistner H., Stallforth H., Gutwald R. et al. Poly(L-lactide): a long-term degradation study in vivo. Part II: Physico-mechanical behaviour of implants. Biomaterials, 1994, v. 15, № 6, p. 439-450.
  78. Pitarresi G., Fiorica C., Palumbo F. S. et al. Polyaspartamidepolylactide electrospun scaffolds for potential topical release of Ibuprofen. J. Biomed. Mater. Res. A, 2012, v. 100, № 6, p. 1565-1572.
  79. Prokop A., Höfl A., Hellmich M. et al. Degradation of poly-L/ DL-lactide versus TCP composite pins: a three-year animal study. J. Biomed. Mater. Res. B Appl. Biomater., 2005, v. 75, № 2, p. 304-310.
  80. Prokop A., Jubel A., Helling H. J. et al. Soft tissue reactions of different biodegradable polylactide implants. Biomaterials, 2004, v. 25, № 2, p. 259-267.
  81. Raghoebar G. M., Liem R. S., Bos R. R. et al. Resorbable screws for fixation of autologous bone grafts. Clin. Oral Implants Res., 2006, v. 17, № 3, p. 288-293.
  82. Rasse M., Moser D., Zahl C. et al. Resorbable poly(D,L)lactide plates and screws for osteosynthesis of condylar neck fractures in sheep. Br. J. Oral Maxillofac. Surg., 2007, v. 45, № 1, p. 35-40.
  83. Rozema F. R., Levendag P. C., Bos R. R. et al. Influence of resorbable poly(L-lactide) bone plates and screws on the dose. distributions of radiotherapy beams. Int. J. Oral Maxillofac. Surg., 1990, v. 19, № 6, p. 374-376.
  84. Saatchi K. and Häfeli U. O. Radiolabeling of biodegradable polymeric microspheres with 99mTc(CO)3+ and in vivo biodistribution evaluation using MicroSPECT/CT imaging. Bioconjug. Chem., 2009, v. 20, № 6, p. 1209-1217.
  85. Saikku-Bäckström A., Tulamo R. M., Räihä J. E. et al. Intramedullary fixation of femoral cortical osteotomies with interlocked biodegradable self-reinforced poly-96L/4D-lactide (SR-PLA96) nails. Biomaterials, 2004, v. 25, № 13, p. 2669-2677.
  86. Saini V., Verma S. K., Sahoo M. K. et al. Sufficiency of a single administration of filarial antigens adsorbed on polymeric lamellar substrate particles of poly (L-lactide) for immunization. Int. J. Pharm., 2011, v. 420, № 1, p. 101-110.
  87. Sakai T., Ishihara T., Higaki M. et al. Therapeutic effect of stealth-type polymeric nanoparticles with encapsulated betamethasone phosphate on experimental autoimmune uveoretinitis. Invest. Ophthalmol. Vis. Sci., 2011, v. 52, № 3, p. 1516-1521.
  88. Sanders W. G., Hogrebe P. C., Grainger D. W. et al. A biodegradable perivascular wrap for controlled, local and directed drug delivery. J. Control Release, 2012, v. 161, № 1, p. 81-89.
  89. Schmidmaier G., Baehr K., Mohr S. et al. Biodegradable polylactide membranes for bone defect coverage: biocompatibility testing, radiological and histological evaluation in a sheep model. Clin. Oral Implants Res., 2006, v. 17, № 4, p. 439-444.
  90. Semete B., Booysen L., Lemmer Y. et al. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine, 2010, v. 6, № 5, p. 662-671.
  91. Sena P., Manfredini G., Barbieri C. et al. Application of poly-L-lactide screws in flat foot surgery: histological and radiological aspects of bio-absorption of degradable devices. Histol. Histopathol., 2012, v. 27, № 4, p. 485-496.
  92. Shi X., Wang Y., Ren L. et al. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Acta Biomater., 2009, v. 5, № 5, p. 1697-1707.
  93. Shin S. B., Cho H. Y., Kim D. D. et al. Preparation and evaluation of tacrolimus-loaded nanoparticles for lymphatic delivery. Eur. J. Pharm. Biopharm., 2010, v. 74, № 2, p. 164-171.
  94. Sinha R. S. Polylactide-based bionanocomposites: a promising class of hybrid materials. Acc. Chem. Res., 2012, v. 45, № 10, p. 1710-1720.
  95. Son J. S., Kim S. G. and Oh J. S. Hydroxyapatite/polylactide biphasic combination scaffold loaded with dexamethasone for bone regeneration. J. Biomed. Mater. Res. A, 2011, v. 99, № 4, p. 638-647.
  96. Stockheim M., Most-Ehrlein S., Rothschenk H. J. and Wirbel R. Cartilage damage caused by a dislocated resorbable interference screw of poly(L-lactide) 46 months after anterior cruciate ligament reconstruction. Z. Orthop. Unfall, 2010, v. 148, № 1, p. 44-48.
  97. Suuronen R., Pohjonen T., Hietanen J. and Lindqvist C. A 5-year in vitro and in vivo study of the biodegradation of polylactide plates. J. Oral Maxillofac. Surg., 1998, v. 56, № 5, p. 604-615.
  98. Taira M., Araki Y., Nakao H. et al. Cellular reactions to polylactide-based sponge and collagen gel in subcutaneous tissue. J. Oral Rehabil., 2003, v. 30, № 1, p. 106-169.
  99. Taş C., Kozluca A., Onur M. A. et al. In vivo degradation and release kinetics of chloramphenicol-loaded poly(D,L)-lactide sponges. Tissue Eng., 1998, v. 4, № 4, p. 353-363.
  100. Thomas K. A., Toth J. M., Crawford N. R. et al. Bioresorbable polylactide interbody implants in an ovine anterior cervical discectomy and fusion model: three-year results. Spine (Phila Pa 1976), 2008, v. 33, № 7, p. 734-742.
  101. Tiainen J., Soini Y., Törmälä P. et al. Self-reinforced polylactide/ polyglycolide 80/20 screws take more than 1(1/2) years to resorb in rabbit cranial bone. J. Biomed. Mater. Res. B Appl. Biomater., 2004, v. 70, № 1, p. 49-55.
  102. Tosi G., Bondioli L., Ruozi B. et al. NIR-labeled nanoparticles engineered for brain targeting: in vivo optical imaging application and fluorescent microscopy evidences. J. Neural Transm., 2011, v. 118, № 1, p. 145-153.
  103. Tosi G., Fano R. A., Bondioli L. et al. Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood-brain barrier. Nanomedicine (Lond), 2011, v. 6, № 3, p. 423-436.
  104. Tsiolis P., Giamarellos-Bourboulis E. J., Mavrogenis A. F. et al. Experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus treated with a polylactide carrier releasing linezolid. Surg. Infect. (Larchmt), 2011, v. 12, № 2, p. 131- 135.
  105. Ueng S. W., Yuan L. J., Lin S. S. et al. In vitro and in vivo analysis of a biodegradable poly(lactide-co-glycolide) copolymer capsule and collagen composite system for antibiotics and bone cells delivery. J. Trauma, 2011, v. 70, № 6, p. 1503-1509.
  106. Veronesi M. C., Aldouby Y., Domb A. J. and Kubek M. J. Thyrotropin-releasing hormone d,l polylactide nanoparticles (TRH-NPs) protect against glutamate toxicity in vitro and kindling development in vivo. Brain Res., 2009, v. 1303, p. 151-160.
  107. Veth R. P., Jansen H. W., Leenslag J. W. et al. Experimental meniscal lesions reconstructed with a carbon fiber-polyurethanepoly(L-lactide) graft. Clin. Orthop. Relat. Res., 1986, v. 202, p. 286-293.
  108. Voges J., Lehrke R., Kim D. G. et al. Tissue reactions after long-term intracerebral implantation of three different types of biodegradable polylactide rods in the rat. J. Exp. Ther. Oncol., 2002, v. 2, № 2, p. 70-76.
  109. Wack A., Baudner B. C., Hilbert A. K. et al. Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice. Vaccine, 2008, v. 26, № 4, p. 552-561.
  110. Walton M. and Cotton N. J. Long-term in vivo degradation of poly-L-lactide (PLLA) in bone. J. Biomater. Appl., 2007, v. 21, № 4, p. 395-411.
  111. Wei S., Zheng Q., Liu L. et al. The study of biocompatibility of super high molecular weight poly D, L-lactic acid inplant. Zhongua Kou Qiang Yi Xue Za Zhi, 2000, v. 37, № 4, p. 269-271.
  112. Wei S., Zheng Q., Zhao Z. et al. Tissue reaction and degradation of super-high molecular weight poly D, L-lactic acid mini-plates and screws: an animal experiment. Hua Xi Kou Qiang Yi Xue Za Zhi, 1999, v. 17, № 1, p. 66-68.
  113. Wen Y., Gallego M. R., Nielsen L. F. et al. Biodegradable nanocomposite microparticles as drug delivering injectable cell scaffolds. J. Control. Release, 2011, v. 156, № 1, p. 11-20.
  114. Willcox N. and Roberts S. Delayed biodegradation of a meniscal screw. Arthroscopy, 2004, v. 20, Suppl. 2, p. 20-22.
  115. Xu Z. X., Chen J. T., Li T. et al. Effects of bioactive modification of poly-D,L-lactide acid scaffolds on the biological behaviors of the seed cells. Nan Fang Yi Ke Da Xue Xue Bao, 2011, v. 31, № 2, p. 289-294.
  116. Yang Y., De Laporte L., Zelivyanskaya M. L. et al. Multiple channel bridges for spinal cord injury: cellular characterization of host response. Tissue Eng. Part A, 2009, v. 15, № 11, p. 3283-3295.
  117. Yoon S. J., Kim S. H., Ha H. J. et al. Reduction of inflammatory reaction of poly(d,l-lactic-co-glycolic Acid) using demineralized bone particles. Tissue Eng. Part A, 2008, v. 14, № 4, p. 539-547.
  118. Zou B., Chen X., Zhi W. et al. Promoted healing of femoral defects with in situ grown fibrous composites of hydroxyapatite and poly(DL-lactide). J. Biomed. Mater. Res. A, 2012, v. 100, № 6, p. 1407-1418.
  119. Zou G. K., Song Y. L., Zhou W. et al. Effects of local delivery of bFGF from PLGA microspheres on osseointegration around implants in diabetic rats. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 2012, v. 114, № 3, p. 284-289.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies