CHANGES IN CALBINDIN-CONTAINING NEURONS IN THE POSTERIOR HORNS OF THE GRAY MATTER OF THE SPINAL CORD AND IN THE SENSORY GANGLION OF THE SPINAL NERVE IN ALBINO RAT AFTER SENSORY DEPRIVATION



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

An immunohistochemical method was used to study the effect of capsaicin treatment on morphometric and structural characteristics of neurons containing 28 kDa calbindin (CAB) in the posterior horns of the spinal cord (SC) gray matter T II segment and in the sensory ganglion of the second thoracic spinal nerve (SGSN) in Wistar rats (n=4). Capsaicin was administered to adult animals 3 times with an interval of 24 hrs, in a total dose of 125 mg/kg, the material was taken on the 14th day. The administration of capsaicin caused a decrease in the proportion of CABimmunopositive (CAB-IP) neurons in SGSN (by 60%) and in dorsal horn laminas I-II-III (by 8, 18 and 15%, respectively), while the average size of CAB-IP neurons increased due to intracellular edema. As a result of deafferentation, similar morphometric and structural changes of CAB-IP neurons developed in both SGSN and posterior horn of SC gray matter, which were manifested by the central chromatolysis, vacuolation of nucleus and cytoplasm indicative of hydropic dystrophy. The irreversibility of the changes observed in the neurons of SGSN and SC dorsal horn laminas I, II and V was supported by the observations of their nuclear deformation, lysis of nucleolus, reduction of the number of CAB-containing neurons, signs of neuronophagia with the formation of residual nodules in place of the dead cells.

Full Text

Restricted Access

About the authors

V. V. Shilkin

Yaroslavl’ State Medical Academy

Email: shilkin39@mail.ru
Department of Normal Physiology with Biophysics

V. V. Porseva

Yaroslavl’ State Medical Academy

Email: vvporseva@mail.ru
Department of Normal Physiology with Biophysics

P. M. Masliukov

Yaroslavl’ State Medical Academy

Email: mpm@yma.ac.ru
Department of Normal Physiology with Biophysics

A. A. Strelkov

Yaroslavl’ State Medical Academy

Email: strelkov-yar@mail.ru
Department of Normal Physiology with Biophysics

References

  1. Маслюков П. М., Коробкин А. А., Коновалов В. В. и др. Возрастное развитие кальбиндин-иммунопозитивных нейронов симпатических узлов крысы. Морфология, 2012, т. 141, вып. 1, с. 77-80.
  2. Маслюков П. М., Порсева В. В., Корзина М. Б. и Ноздрачев А. Д. Нейрохимические особенности сенсорных нейронов в онтогенезе. Росс. физиол. журн., 2013, т. 99, № 7, с. 777-792.
  3. Порсева В. В., Шилкин В. В., Корзина М. Б. и др. Особенности возрастных изменений НФ200+-нейронов чувствительных узлов различных сегментарных уровней при химической деафферентации. Морфология, 2012, т. 142, вып. 4, с. 37-42.
  4. Antal M., Freund T. F. and Polgár E. Calcium-binding proteins, parvalbumin- and calbindin-D28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: a light and electron microscopic study. Comp. Neurol., 1990, v. 295, № 3, p. 467-484.
  5. Brouns I., Van Genechten J., Hayashi H. et al. Dual sensory innervation of pulmonary neuroepithelial bodies. Am. J. Respir. Cell Mol. Biol., 2003, v. 28, № 3, р. 275-285.
  6. Сhen J. H., Weng H. R. and Dougherty P. M. Sensitization of dorsal root reflexes in vitro and hyperalgesia in neonatal rats produced by capsaicin. Neuroscience, 2004, v. 126, № 3, р. 743-751.
  7. Donnerer J., Liebmann I. and Schicho R. Differential regulation of 3-beta-hydroxysteroid dehydrogenase and vanilloid receptor TRPV1 mRNA in sensory neurons by capsaicin and NGF. Pharmacolojy, 2005, v. 73, № 2, р. 97-101.
  8. Fuchs A., Lirk P., Stucky C. et al. Painful nerve injuri decreased resting cytosolic calcium concentrations in sensory neurons of rats. Anesthesiology, 2005, v. 102, № 6, р. 1217-1225.
  9. Gibbons S. J., Brorson J. R., Bleakman D. et al. Calcium influx and neurodegeneration. Ann. N Y Acad. Sci., 1993, v. 679, p. 22-33.
  10. Holzer P. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachikinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience, 1988, v. 24, № 3, р. 739-768.
  11. Holzer P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol. Rev., 1991, v. 43, p. 143-201.
  12. Ichikawa H. and Sugimoto T. Co-expression of VRL-1 and calbindin D-28k in the rat sensory ganglia. Brain Res., 2002, v. 924, № 1, p. 109-112.
  13. Jin H. W., Ichikawa H., Fujita M. et al. Involvement of caspase cascade in capsaicin-induced apoptosis of dorsal root ganglion neurons. Brain Res., 2005, v. 1056, № 2, р. 139-146.
  14. Kim J. J., Chang I. Y., Chung Y. Y. et al. Immunohistochemical studies on the calbindin D-28K and parvalbumin positive neurons in the brain stem and spinal cord after transection of spinal cord of rats. Korean J. Phys. Anthropol., 2002, v. 15, № 4, p. 305-329.
  15. Li Y. N., Li Y. C., Kuramoto H. et al. Immunohistochemical de monst ration of the calcium channel alpha2 subunit in the chicken dorsal root ganglion and spinal cord: a special reference to colocalization with calbindin-D28k in dorsal root ganglion neurons. Neurosci. Res., 2007, v. 59, № 3, p. 304-308.
  16. Lu E., Llano D. A. and Sherman S. M. Different distributions of cal bindin and calretinin immunostaining across the medial and dorsal divisions of the mouse medial geniculate body. Hearing Res., 2009, v. 257, p. 16-23.
  17. Ma Q. P. Expression of capsaicin receptor (VR1) by myelinated primary afferent neurons in rats. Neurosci. Lett., 2002, v. 319, р. 87-90.
  18. Neher E. Details of Ca2+ dynamics matter. Physiology, 2008. v. 586, p. 2031.
  19. Piper A. S. and Docherty R. J. One-way cross-desensitization between P2X purinoceptors and vanilloid receptors in adult rat dorsal root ganglion neurons. J. Physiol., 2000, v. 15, № 523, р. 685-696.
  20. Punnakkal P., von Schoultz C., Haenraets K. et al. Morphological, biophysical and synaptic properties of glutamatergic neurons of the mouse spinal dorsal horn. J. Physiol., 2014, v. 592, № 4, p. 759-776.
  21. Rexed B. The cytoarchitectonic organization of the spinal cord of the cat. J. Сomp. Neurol., 1952, v. 96, p. 415-495.
  22. Schwaller B. The continuing disappearance of «pure» Ca2+ buffers. Cell Mol. Life Sci., 2009, v. 66, p. 275-300.
  23. Steiner T. J. and Turner L. M. Cytoarchitecture of the rat spinal cord. J. Physiol., 1972, v. 222, p. 123-125.
  24. Szallasi A. and Blumberg P. M. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev., 1999, v. 51, № 2, p. 159-211.
  25. Torsney C., Meredith-Middleton J. and Fitzgerald M. Neonatal capsaicin treatment prevents the normal postnatal withdrawal of A fibres from lamina II without affecting fos responses to innocuous peripheral stimulation. Brain Res. Dev. Brain Res., 2000, v. 11, v. 121, № 1, p. 55-65.
  26. Yoshida S., Senba E., Kubota Y. et al. Calcium-binding proteins calbindin and parvalbumin in the superficial dorsal horn of the rat spinal cord. Neuroscience, 1990, v. 37, № 3, p. 839-848.
  27. Zheng J., Lu Y. and Perl E. R. Inhibitory neurones of the spinal substantia gelatinosa mediate interaction of signals from primary afferents. J. Physiol., 2010, v. 588, p. 2065-2075.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies