HIERARCHY OF SPIRAL ORGANIZATION OF SKELETAL STRUCTURES. INTERRELATIONSHIP BETWEEN STRUCTURE AND FUNCTIONS

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The objective of this review is to discuss the interrelationship between hierarchy of spiral organization of the structural elements of the skeleton and its mechanical characteristics with regard to functional-biological expediency. The following hierarchic levels of spiral organization of skeletal structures are defined: collagen chains, collagen molecules, microfibrils, fibrils, collagen fibers, osteon network and organization of osseous macrostructure responsible for torsion effect in weight bearing. This spiral organization creates the conditions, under which the directions of domineering forces in the bone usually do not coincide with the direction of the longitudinal crystallite axes. It causes shifting deformity between the adjacent crystallites, which should be taken into account alongside with distractioncompression deformity. These features form the basis of nanolevel mechanism responsible for mechanical characteristics of bone tissue.

References

  1. Аврунин А.С., Корнилов Н.В. и Суханов А.В. Позиционные регуляторы костной ткани - основа ауторегуляторного механизма развития и воспроизведения остеопороза. Морфология, 1998, т. 113, вып. 4, с. 7-12.
  2. Аврунин А.С., Корнилов Н.В., Суханов А.В. и Емельянов В.Г. Формирование остеопоротических сдвигов в структуре костной ткани. СПб., Ольга, 1998.
  3. Аврунин А.С., Паршин Л.К. и Аболин А.Б. Взаимосвязь морфофункциональных сдвигов на разных уровнях иерархической организации кортикальной кости при старении. Морфология, 2006, т. 129, вып. 3, с. 22-29.
  4. Аврунин А.С., Тихилов Р.М., Аболин А.Б. и Щербак И.Г. Уровни организации минерального матрикса костной ткани и механизмы, определяющие параметры их формирования (аналитический обзор). Морфология, 2005, т. 127, вып. 2, с. 78-82.
  5. Аврунин А.С., Тихилов Р.М., Аболин А.Б. и Щербак И.Г. Лекция по остеологии. Многоуровневый характер структуры минерального матрикса и механизмы его формирования. Гений ортопедии, 2005, № 2, с. 89-94.
  6. Аврунин А.С., Тихилов Р.М., Паршин Л.К. и др. Наноуровневый механизм жесткости и прочности кости. Травматол. ортопед. России, 2008, № 2, с. 77-83.
  7. Данильченко С.Н. Структура и свойства апатитов кальция с точки зрения биоминералогии и биоматериаловедения (обзор). Вісн. СумДУ, Серія Фізика, математика, механіка, 2007, № 2, с. 33-59.
  8. Денисов-Никольский Ю.И., Жилкин Б.А., Докторов А.А. и Матвейчук И.В. Ультраструктурная организация минерального компонента пластинчатой костной ткани у людей зрелого и старческого возраста. Морфология, 2002, т. 122, вып. 5, с. 79-83.
  9. Денисов-Никольский Ю.И., Миронов С.П., Омельяненко Н.П. и Матвейчук И.В. Актуальные проблемы теоретической и клинической остеоартрологии. М., ОАО «Типография „Новости"», 2005.
  10. Лаврищева Г.И. и Оноприенко Г.А. Морфологические и клинические аспекты репаративной регенерации опорных органов и тканей. М., Медицина, 1996.
  11. Ньюман У. и Ньюман М. Минеральный обмен кости. М., Иностр. лит-ра, 1961.
  12. Омельяненко Н.П. Костная ткань. Структурно-функциональная характеристика ее основных компонентов. Гл. 2-я. В кн.: Актуальные проблемы теоретической и клинической артрологии. М., «Типография „Новости"», 2005, с. 37-71.
  13. Омельяненко Н.П., Жеребцов Я.Д. и Михайлов И.Н. Ультраструктура коллагеновых волокон и основного вещества дермы кожи человека. Арх. анат., 1977, т. 72, вып. 4, с. 69-76.
  14. Привес М.Г., Лысенко Н.Р. и Бушкович В.И. Анатомия человека. СПб., Гиппократ, 2002.
  15. Фридрихсберг Д.С. Курс коллоидной химии. СПб., Химия, 1995.
  16. Щербак И.Г. Биологическая химия. СПб., Изд-во СПбГМУ, 2005.
  17. Akkus O., Adar F. and Schaffler M.B. Age-related changes in physi cochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone, 2004. № 34, p. 443-453.
  18. Akkus O., Knott D.F., Jepsen K.J. et al. Relationship between damage accumulation and mechanical property degradation in cortical bone: microcrack orientation is important. J. Biomed. Mater. Res., 2003, v. 65A, № 4, p. 482-488.
  19. Akkus O., Polyakova-Akkus A., Adar F. and Schaffler M.B. Aging of microstructural compartments in human compact bone. J. Bone Miner. Res., 2003, v. 18, № 6, p. 1012-1019.
  20. Akkus O., Yeni Y.N. and Wasserman N. Fracture mechanics of cortical bone tissue: a hierarchical perspective. Biomed. Eng., 2004, v. 32, № 5-6, p. 379-425.
  21. Berisio R., Vitagliano L., Mazzarella L. and Zagari A. Recent progress on collagen triple helix structure, stability and assembly. Protein Pept. Lett., 2002, v. 9, № 2, p. 107-116.
  22. Blank R.D., Baldini T.H., Kaufman M. et al. Spectroscopically determined collagen Pyr/deH-DHLNL cross-link ratio and crystallinity indices differ markedly in recombinant congenic mice with divergent calculated bone tissue strength. Connect. Tiss. Res., 2003, v. 44, № 3-4, p. 134-142.
  23. Bonucci E. and Silvestrini G. Ultrastructure of the organic matrix of embryonic avian bone after en bloc reaction with various electron-dense «stains». Acta Anat., 1996, v. 156, № 1, p. 22-33.
  24. Brown A., Stock G., Patel A.A. et al. Osteogenic protein-1. A review of its utility in spinal applications. BioDrugs, 2006, v. 20, № 4, p. 243-251.
  25. Buckwalter J.A., Glimcher M.J., Cooper R.R. and Recker R. Bone biology. Part I: structure, blood supply, cells, matrix, and mineralization. J. Bone Joint Surg., 1995, v. 77-A, № 8, p. 1256-1275.
  26. Buckwalter J.A., Glimcher M.J., Cooper R.R. and Recker R. Bone biology. Part II: formation, form, modeling, remodeling, and regulation of cell function. J. Bone Joint Surg. 1995, v. 77-A, № 8, p. 1276-1289.
  27. Byers P.H. Collagens: building blocks at the end of the development line. Clin. Genet., 2000, v. 58, № 4, p. 270-279.
  28. Chamay A. and Tschantz P. Mechanical influences in bone remodeling. Experimental research on Wolff's law. J. Biomechanics., 1972, v. 5, p. 173-180.
  29. Chan G.K. and Duque G. Age-related bone loss: old bone, new facts. Gerontology, 2002, v. 48, № 2, p. 62-71.
  30. Cohen J. and Hakris W. H. The three-dimensional anatomy of haversian systems. J. Bone Joint Surg., 1958, v. 40-A, № 2, p. 419-434.
  31. Frost H.M. Цитировано по Robling A.G. and Sam D. 1999.
  32. Frost H.M. Obesity, and bone strength and mass. A tutorial based on insights from a new paradigm. Bone, 1997, v. 21, № 3, p. 211-214.
  33. Frost H.M. New targets for the studies of biomechanical, endocrinologic, genetic and pharmaceutical effects on bones: bone's "nephron equivalents", muscle, neuromuscular physiology. J. Musculoskeletal Res., 2000, v. 4, № 2, p. 67-84.
  34. Fujisawa R., Nodasaka Y. and Kuboki Y. Further characterization of interaction between bone sialoprotein and collagen. Calcif. Tiss. Int., 1995, v. 56, № 2, p. 140-144.
  35. Gamss B., Kim R. H. and Sedek J. Bone sialoprotein. Clin. Rev. Oral. Biol. Med., 1999, v. 10, № 1, p. 79-98.
  36. Gordon J.A. R., Tye C.E., Sampaio A.V. et al. Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone, 2007, v. 41 № 3, p. 462-473.
  37. Hanson D.A. and Eyre D.R. Molecular site specificity of pyridinoline and pyrrole cross-links in type I collagen of human bone. J. Biol. Chem., 1996, v. 271, № 43 p. 26508-26516.
  38. Knott L. and Bailey A. J. Collagen cross-links in mineralizing tissues: A review of their chemistry, function, and clinical relevance. Bone, 1998, v. 22, p. 181-187.
  39. Knott L., Whitehead C.C., Fleming R.H. and Bailey A. Biochemical changes in the collagenous matrix of osteoporotic avian bone. J. Biochem., 1995, v. 310, p. 1045-1051.
  40. Marotti G., Muglia M.A. and Palumbo С. Structure and function of lamellar bone. Clin. Rheumatol., 1994, v. 13, Suppl. 1, p. 63-68.
  41. McKee M.D., Addison W.N. and Kaartinen M.T. Hierarchies of extracellular matrix and mineral organization in bone of the craniofacial complex and skeleton. Cells Tiss. Organs, 2005, v. 181, № 3-4, p. 176-188.
  42. Mohsin S., Taylor D. and Leeu T.C. Three-dimensional reconstruction of haversian systems in ovine compact bone. Eur. J. Morphol., 2002, v. 40, № 5, p. 309-315.
  43. Risteli J., Niemi S., Kauppila S. et al. Collagen propeptides as indicators of collagen assembly. Acta Orthop. Scand., 1995, v. 66, Suppl. 266, p. 183-188.
  44. Robling A.G. and Sam D. Stout morphology of the drifting osteon. Cells Tissues Organs, 1999, v. 164, p. 192-204.
  45. Seeman E. Pathogenesis of bone fragility in women and men. Lancet, 2002, v. 359, p. 1841-1850.
  46. Silverman S.L., Delmas P.D., Kulkarni P.M. et al. Comparison of fracture, cardiovascular event, and breast cancer rates at 3 years in postmenopausal women with osteoporosis. J. Am. Geriatr. Soc., 2004, v. 52, № 9, p. 1543-1548.
  47. Skedros J.G. Osteocyte lacuna population densities in sheep, elk and horse calcanei. Cells Tiss. Organs, 2005, v. 181, № 3-4, p. 23-37.
  48. Skedros, J.G. and Hunt K.J. Does the degree of laminarity correlate with site-specific differences in collagen fibre orientation in primary bone? An evaluation in the turkey ulna diaphysis. J. Anat., 2004, v. 205, № 2, p. 121-134.
  49. Sodek J. and Mckee M.D. Molecular and cellular biology of alveolar bone. Periodontol, 2000, v. 24, p. 99-126.
  50. Turner C.H. and Pidaparti R.M.V. The Anisotropy of osteonal bone and its ultrastructural implications. Bone, 1995, v. 17, № 1, p. 85-89.
  51. Van der Meulen M.С.H., Jepsen K.J. and Mikic B. Understanding bone strength: size isn't everything. Bone, 2001, v. 29, № 2, p. 101-104.
  52. Wang X., Bank R.A., TeKoppele J.M. et al. Effect of collagen denaturation on the toughness of bone. Clin. Orthop. Relat. Res., 2000, № 371, p. 228-239.
  53. Wang X., Li X., Shen X. and Agrawal С.M. Age-related changes of noncalcified collagen in human cortical bone. Ann. Biomed. Eng., 2003, v. 31, p. 1-7.
  54. Wang X. and Puram S. The toughness of cortical bone and its relationship with age. Ann. Biomed. Eng., 2004, v. 32, № 1, p. 123-135.
  55. Weiner S. and Wagner H.D. The material bone: structuremechanical function relations. Annu. Rev. Mater. Sci., 1998, v. 28, p. 271-298.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2010 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies