EARLY REACTIVE CHANGES OF MYELIN SHEATH IN THE AREA OF MYELIN SHEATH GAPS (NODES OF RANVIER) IN NERVE FIBERS (A SUPRAVITAL STUDY)

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Using the inverted phase contrast microscope, the supravital study of structural dynamics of single myelin sheath gaps (nodes of Ranvier) of isolated frog myelin nerve fibers was performed after mechanical injury and in the medium with the decreased ion force under the conditions which induce, in electrophysiological experiments, the expression of the axolemmal K+-channels in the paranodal area. Videorecording has shown that within this area the myelin sheath stratification appeared that was associated with the swelling of Schwann cell cytoplasm enclosed in the terminal membranous loops of myelin. An increase of the degree of stratification of the lamellar myelin complexes make them invisible in the light microscope; therefore, it is not the translocation of the myelin sheath from the node cleft that is recorded, as many authors believed, but a shift of only the visible border of the compact, yet unstratified myelin sheath. Hence, the removal of myelin (demyelination) was absent, and the electrophysiological effect can be accounted for by a significant fall of electrical resistance in paranodal area as a result of swelling of terminal loops and stratification of the myelin sheath. Preparations examination also revealed a decrease of the axonal diameter in, which is proportional to swelling of the myelin sheath terminal parts. Since the outer fiber diameter did not change, it can be concluded that the process observed is the result of swelling of the Schwann cell cytoplasm due to the axoplasm water fraction which may be a peculiar process of axo-glial interactions.

References

  1. Каталымов Л.Л. и Сотников О.С. Геометрическая роль периаксонального пространства перехвата Ранвье миелинизированных нервных волокон. В кн.: Вестн. Ульяновск. гос. педагог. ун-та им. И.Н. Ульянова. Ульяновск, изд. Федерального агенства по образованию, 2008, вып. 4. с. 116-123.
  2. Ревенко С.В., Сотников О.С. и Ходоров Б.И. Сравнительный анализ морфологических и физиологических характеристик перехвата Ранвье. Нейрофизиология, 1978, т. 10, № 4, с. 400-406.
  3. Сотников О.С. Функциональная морфология живого мякотного нервного волокна. Л., Наука, 1976.
  4. Сотников О.С. Статика и структурная кинетика живых асинаптических дендритов. СПб., Наука, 2008.
  5. Chiu S.Y. and Ritchie J.M. Potassium channels in nodal and internodal axonal membrane of mammalian myelinaled fibres. Nature, 1980, v. 284, № 5752, p. 170-171.
  6. Chiu S.Y. and Ritchie J.M. Evidence for the presence of potassium chanels in the paranodal region of acutely demyelinated mammalian single nerve fibres. J. Physiol., 1981, v. 313, p. 415-437.
  7. Chiu S.Y. and Ritchie J.M. Evidence for the presence of potassium chanels in the internode of frog myelinated nerve fibres. J. Physiol., 1982, v. 322, p. 485-501.
  8. Chiu S.Y., Ritchie J.M. On the physiological role of internodal potassium channels and the security of conduction in myelinated nerve fibres. Proc. R. Soc. Lond. B, Biol. Sci., 1984, v. 220, № 1221, p. 415-422.
  9. Chiu S.Y. and Schwarz W. Sodium and potassium currents in acutely demyelinated internodes of rabbit sciatic nerves. J. Physiol., 1987, v. 391, p. 631-649.
  10. Horakova M., Nonner W. and Stämpfli R. Action potentials and voltage clamp current of singl rat Ranvier nodes. Proc. 24 th Int. Congr. Physiol. Sci., 1968, p. 198.
  11. Poliak S., Salomon D., Elhanany H. et al. Juxtaparanodal clustering of shaker-like K+ channels in myelinated axons depends on Caspr 2 and TAG1. J. Cell Biol., 2003, v. 162, № 6, p. 1149-1160.
  12. Sherman D.L., Taif S., Johnson R. et al. Neurofascins are required to establish axonal domains for salutatory conduction. Neuron, 2005, v. 48, № 5, p. 737-742.
  13. Shrager P., Chiu S. Y., Ritchie J.M. et al. Optical recording of action potential propagation in demyelinated frog nerve. J. Biophys., 1987, v. 51, № 2, p. 351-355.
  14. Susuki K., Baba H., Tohyama K. et al. Gangliosides contribute to stability of paranodal junctions and ion channel clusters in myelinated nerve fibers. Glia, 2007, v. 55, № 7, p. 746-757.
  15. Zhang C.L., Ho P.L., Kintner D.B. et al. Activity-dependent regulation of mitochondrial motility by calcium and Na/K-ATPase at nodes of Ranvier of myelinated nerves. J. Neurosci., 2010, v. 30, № 10, p. 3555-3566.
  16. Zhou L., Zhang C.L., Messing A. and Chiu S.Y. Temperaturesensitive neuromuscular transmission in Kv1. 1 nul mice: role potassium channels under the myelin sheath in young nerves. J. Neurosci., 1998, v. 18, № 18, p. 7200-7215.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies