REGENERATION OF THE DAMAGED MANDIBULAR BONE IN RAT AFTER THE INJECTION OF AUTOLOGOUS MESENCHYMAL STEM CELLS OF BONE MARROW ORIGIN ADSORBED ON THE FIBRIN CLOT

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The processes of the repair of the damaged mandibular bone in rats were studied using light microscopy and x-ray densitometry at various time intervals after the local injection of the plateletrich fibrin clot (PRFC), autologous mesenchymal (stromal) stem cells of bone marrow origin (AMSCBMO) or AMSCBMO, adsorbed on PRFC, into the damaged site. The best results were obtained after the application of PRFC with AMSCBMO. One week after the operation, the mandibular bone defect was largely filled with the newly formed bone tissue. It seems most probable that in this case the effects of fibrin and stem cells on the damaged bone were summarized or even amplified. Bone formation in these cases appeared to begin in the center, but not at the edges, of the defect. AMSCBMO were distributed over the whole volume of PRFC, filling all the defect more or less uniformly. As a result, maximally fast and successful restoration of bone tissue was reached in the area of the defect.

References

  1. Майбородин И.В., Колесников И.С., Шеплев Б.В. и др. Гранулематозное воспаление после применения препаратов фибрина. Морфол. ведомости, 2007, № 3-4, с. 116-118.
  2. Майбородин И.В., Колесников И.С., Шеплев Б.В. и Рагимова Т.М. Применение фибрина и его препаратов в стоматологии. Стоматология, 2008, т. 87, № 6, с. 75-77.
  3. Майбородин И.В., Колесников И.С., Шеплев Б.В. и др. Морфология подлежащих тканей десны после дентальной имплантации с применением препаратов фибрина. Стоматология, 2009, т. 88, № 1, с. 9-13.
  4. Anitua E., Sanchez M., Nurden A.T. et al. New insights into and novel applications for platelet-rich fibrin therapies. Trends Biotechnol., 2006, v. 24, № 5, p. 227-234.
  5. Anitua E., Sanchez M., Nurden A.T. et al. Autologous fibrin matrices: a potential source of biological mediators that modulate tendon cell activities. J. Biomed. Mater. Res. A., 2006, v. 77, № 2, p. 285-293.
  6. Chanda D., Kumar S. and Ponnazhagan S. Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in diseases of the skeleton. J. Cell. Biochem., 2010, v. 111, № 2, p. 249-257.
  7. Clines G.A. Prospects for osteoprogenitor stem cells in fracture repair and osteoporosis. Curr. Opin. Organ. Transplant., 2010, v. 15, № 1, p. 73-78.
  8. Hayashi O., Katsube Y., Hirose M. et al. Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif. Tissue Int., 2008, v. 82, № 3, p. 238-247.
  9. Kallai I., Lenthe van G.H., Ruffoni D. et al. Quantitative, structural, and image-based mechanical analysis of nonunion fracture repaired by genetically engineered mesenchymal stem cells. J. Biomech., 2010, v. 43, № 12, p. 2315-2320.
  10. Kumar S., Wan C., Ramaswamy G. et al. Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol. Ther., 2010, v. 18, № 5, p. 1026-1034.
  11. Maiborodin I., Shevela A., Perrin T. et al. Experimental results of the fibrin clot use to accelerate the regeneration of damaged bone in the rat lower jaw. Surg. Sci., 2010, v. 1, № 1, p. 1-6.
  12. Neumann K., Dehne T., Endres M. et al. Chondrogenic differentiation capacity of human mesenchymal progenitor cells derived from subchondral cortico-spongious bone. J. Orthop. Res., 2008, v. 26, № 11, p. 1449-1456.
  13. Niemeyer P., Fechner K., Milz S. et al. Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials., 2010, v. 31, № 13, p. 3572-3579.
  14. Pieri F., Lucarelli E., Corinaldesi G. et al. Effect of mesenchymal stem cells and platelet-rich plasma on the healing of standardized bone defects in the alveolar ridge: a comparative histomorphometric study in minipigs. J. Oral Maxillofac. Surg., 2009, v. 67, № 2, p. 265-272.
  15. Ratajczak M.Z., Kucia M., Reca R. et al. Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells 'hide out' in the bone marrow. Leukemia, 2004, v. 18, № 1, p. 29-40.
  16. Schwartz-Arad D., Levin L. and Aba M. The use of platelet rich plasma (PRP) and platelet rich fibrin (PRF) extracts in dental implantology and oral surgery. Refuat Hapeh Vehashinayim., 2007, v. 24, № 1, p. 51-55, 84.
  17. Steenhuis P., Carr K.M., Pettway G.J. and Ignelzi M.A. Jr. Osteogenic and adipogenic cell fractions isolated from postnatal mouse calvaria. Cells Tissues Organs, 2009, v. 190, № 3, p. 150-157.
  18. Sumiyoshi K., Kubota S., Furuta R.A. et al. Thrombopoieticmesenchymal interaction that may facilitate both endochondral ossification and platelet maturation via CCN2. J. Cell. Commun. Signal., 2010, v. 4, № 1, p. 5-14.
  19. Yoshimi R., Yamada Y., Ito K. et al. Self-assembling peptide nanofiber scaffolds, platelet-rich plasma, and mesenchymal stem cells for injectable bone regeneration with tissue engineering. J. Craniofac. Surg., 2009, v. 20, № 5, p. 1523-1530.
  20. Zhang Z.Y., Teoh S.H., Chong M.S. et al. Neo-vascularization and bone formation mediated by fetal mesenchymal stem cell tissue-engineered bone grafts in critical-size femoral defects. Biomaterials, 2010, v. 31, № 4, p. 608-620.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies