Green fluorescent protein absorption and accumulation in the cells of renal proximal tubules after its increased entry into circulation



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The uptake of green fluorescent protein (GFP) by the proximal renal tubules was studied in the anaesthetized rats using laser confocal microscopy after GFP intravenous injection or administration into the small intestine lumen. The specific green fluorescence revealed in the proximal tubule cells after intravenous injection correlated with the logarithm of GFP dose injected intravenously (r=0.96, p<0.05). GFP fluorescence after its intravenous injection was higher than that one after GFP infusion into the small intestine (p<0.05). Following the increase of injected GFP dose, the epitheliocyte cytoplasm, in addition to diffuse fluorescence, demonstrated large intensely fluorescent vesicles, that was confirmed by a graphical analysis. The reported changes in the intensity and pattern of specific fluorescence indicate the enhancement of GFP absorption by the cells of proximal tubules and GFP accumulation in the intracellular compartments during its increased entry into circulation.

About the authors

N P PRUTSKOVA

I.M. Sechenov RAS Institute of Evolutionary Physiology and Biochemistry, St. Petersburg

Email: prutsk@iephb.ru
Лаборатория физиологии почки и водно-солевого обмена; Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН, Санкт-Петербург; I.M. Sechenov RAS Institute of Evolutionary Physiology and Biochemistry, St. Petersburg

Ye V SELIVERSTOVA

I.M. Sechenov RAS Institute of Evolutionary Physiology and Biochemistry, St. Petersburg

Лаборатория физиологии почки и водно-солевого обмена; Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН, Санкт-Петербург; I.M. Sechenov RAS Institute of Evolutionary Physiology and Biochemistry, St. Petersburg

References

  1. Бурмакин М.В., Селиверстова Е.В. и Наточин Ю.В. Накопление жёлтого флюоресцентного белка в почке после его всасывания в кишечнике крыс. Рос. физиол. журн., 2005, т. 91, № 10, с. 1195-1204.
  2. Бурмакин М.В., Селиверстова Е.В. и Наточин Ю.В. Динамика всасывания в кишке и реабсорбции в почке желтого флюоресцентного белка у крыс в постнатальном онтогенезе. Журн. эвол. биохим., 2007, т. 43, № 2, с. 187-193.
  3. Селивёрстова Е.В., Бурмакин М.В., Шахматова Е.И. и др. Аккумуляция в почке экзогенного белка после его всасывания в кишечнике при развитии экспериментальной почечной недостаточности у крыс. Нефрология, 2007, т. 11, № 1, с. 7-15.
  4. Baran D., Tendstad O. and Aukland K. Localization of tubular uptake segment of filtered cystatin C and aprotinin in the rat kidney. Acta Physiol., 2006, v. 186, p. 209-221.
  5. Berin M.C., Li H. and Sperber K. Antibody-mediated antigen sampling across intestinal epithelial barriers. Ann. N. Y. Acad. Sci., 2006, v. 1072, p. 253-261.
  6. Borges E.L., Petroianu A., Barbosa A.J. et al. Jejunal absorption of trypsin in rat and guinea pig. Braz. J. Med. Biol. Res., 1995, v. 28, № 1, p. 65-73.
  7. Cloutier M., Gingras D. and Bendayan M. Internalization and transcytosis of pancreatic enzymes by the intestinal mucosa. J. Histochem. Cytochem., 2006, v. 54, № 7, p. 781-794.
  8. Cococel C., Maita K., Baumann K. and Hook J.B. Renal processing of low molecular weight proteins. Pflьgers Arch., 1984, v. 401, № 4, p. 333-339.
  9. Crameri A., Whitehorn E.A., Tate E. and Stemmer W.P. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol., 1996, v. 14, p. 315-319.
  10. Hysing J. and Tolleshaug H. Quantitative aspects of the uptake and degradation of lysozyme in the rat kidney in vivo. Biochim. Biophys. Acta, 1986, v. 887, № 1, p. 42-50.
  11. Seliverstova E.V., Burmakin M.V. and Natochin Yu.V. Renal clearance of absorbed intact GFP in the frog and rat intestine. Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 2007, v. 147, № 4, p. 1067-1073.
  12. Takano M., Koyama Y., Nishikawa H. et al. Segment-selective absorbtion of lysozyme in the intestine. Eur. J. Pharmacol., 2004, v. 502, № 1-2, p. 149-155.
  13. Tenstad O., Roald A.B., Grubb A. and Aukland K. Renal handling of radiolabelled human Cystatin C in the rat. Scand. J. Clin. Lab. Invest., 1996, v. 56, № 5 p. 409-414.
  14. Tsien R.Y. The green fluorescent protein. Annu. Rev. Biochem., 1998, v. 67, p. 509-544.
  15. Udall J.N., Colony P., Fritze L. et al. Development of gastrointestinal mucosal barrier. II. The effect of natural versus artificial feeding on intestinal permeability to macromolecules. Pediatr Res., 1981, v. 15, № 3, p. 245-259.
  16. Verkusha V.V., Kuznetsova I.M., Stepanenko O.V. et al. High stability of Discosoma DsRed as compared to Aequorea EGFP. Biochemistry, 2003, v. 42, № 26, p. 7879-7884.
  17. Walker W.A. and Bloch K.J. Intestinal uptake of macromolecules in vitro and in vivo studies. Ann. N.Y. Acad. Sci., 1983, v. 409, p. 593-602.
  18. Zhai X.Y., Birn H., Jensen K.B. et al. Digital three-dimentional reconstruction and ultrastructure of the mouse proximal tubule. J. Am. Soc. Nephrol., 2003, v. 14, № 3, p. 611-619.
  19. Ziv E. and Bendayan M. Intestinal absorption of peptides through the enterocytes. Microscop. Res. Techniq., 2000, v. 49, № 4, p. 346-352.
  20. Ziv E., Lior O. and Kidron M. Absorption of protein via the intestinal wall. A quantative model. Biochem. Pharmacol., 1987, v. 36, № 7, p. 1035-1039.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2009 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies