Morphofunctional characteristics of the vessels of the small circle of blood circulation in those who died from severe and extremely severe forms of new coronavirus infection



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: An important feature of COVID-19 is the development of pronounced hypercoagulation with an increased risk of thrombotic damage to the pulmonary vascular bed, mainly the pulmonary arteries. Thrombosis of the pulmonary blood vessels causes a local violation of hemodynamics with the development of hyperemia, edema, which leads to a decrease in ventilation of the lung tissue area and serves as one of the causes of respiratory failure.

AIM: This study aimed to conduct a morphological and morphometric analysis of the vascular bed of lung tissues in deceased with severe and extremely severe forms of new coronavirus infection who were on inpatient treatment in the period 2020-2022.

METHODS: A pathomorphologic study of 129 autopsy cases with a confirmed diagnosis of a new coronavirus infection COVID-19 was performed. Morphometric analysis and statistical data processing of the pulmonary vascular system in histologic preparations stained with hematoxylin and eosin stain, orcein stain and Martius Scarlet Blue (MSB) stain was performed. The control group consisted of 14 patients who died of cardiovascular disease with bilateral focal confluent pneumonia.

RESULTS: It was found that the proportion of thrombosed vessels in the lung tissues of the deceased was 27.6%. In 87.2% of cases, thrombosis develops in small arteries (lumen diameter 30-500 microns) and small veins (lumen diameter 40-500 microns). The vascular-functional indices of Kernogan and Vogenworth were statistically significantly increased in small arteries and small veins of the 4th order (p=0.001), small arteries (p=0.001) and small veins of the 5th order (p=0.014) compared with the control group.

CONCLUSION: Diffuse involvement of small caliber blood vessels in the pathological process reflects the severity of specific hemocoagulopathic disorders in the lung tissue. Such disorders lead to the development of ventilation-perfusion disorders and entail an increase in right ventricular failure.

Full Text

Table 1. Vital signs of patients who died from a new coronavirus infection on the first and last days of hospitalization. N - number of analyzed observations

Table 2. Data from clinical, biochemical blood tests and coagulograms in patients who died from a new coronavirus infection on the first and last days of hospitalization

Table 3. The proportion of thrombosed blood vessels of the lungs depending on the order according to S. Singhal et al. (1973)

Table 4. The proportion of thrombosed blood vessels in the lungs depending on the internal diameter according to N. C. Staub and E. L. Schultz (1968)

Table 5. The proportion of the age of blood clots in the blood vessels of the small circle of circulation in those who died from a new coronavirus infection

Table 6. Comparison of the Kernogan index depending on their order and inner diameter. Only data with significant differences p≤0.05 are given

Table 7. Comparison of the Vogenworth index depending on their order and inner diameter. Only data with significant differences p≤0.05 are given

ADDITIONAL INFORMATION

Funding source. The study was carried out within the framework of the project of St. Petersburg State University ID 94029859.

Competing interests. The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.

Authors’ contribution. All authors confirm that their authorship meets the international ICMJE criteria (all authors have made a significant contribution to the development of the concept, research and preparation of the article, read and approved the final version before publication). A.M. Emelin – collection and processing of material, writing the text; I. Sorochanu – literature review, collection and processing of material, writing the text; Z.P. Asaulenko – literature review, collection and processing of material, writing the text; V.A. Rogovoy - collection and processing of material, writing the text; O.S. Popov - concept and design research, collection and processing of material; S.V. Mosenko – concept and design research, collection and processing of material; S.V. Apalko – concept and design of research, collection and processing of material; A.S. Buchaka – collection and processing of material; S.V. Gladchenko – concept and design of research; A.Yu. Anisenkova - concept and design of research; S.G. Shcherbak - the concept and design of the study; R.V. Deev - the concept and design of the study, writing and editing the text.

×

About the authors

Aleksey M. Emelin

North-Western State Medical University named after I.I. Mechnikov

Email: eamar40rn@gmail.com
ORCID iD: 0000-0003-4109-0105
SPIN-code: 5605-1140

Assistant of the Department of Pathological Anatomy

Russian Federation, 41, Kirochnaya str., Saint Petersburg, Russia, 191015

Irina Sorochanu

North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: opeairina@gmail.com
ORCID iD: 0000-0002-6909-8937
SPIN-code: 4072-3845
Scopus Author ID: 57817025400

Student

Russian Federation, 41, Kirochnaya str., Saint Petersburg, Russia, 191015

Zakhar P. Asaulenko

North-Western State Medical University named after I.I. Mechnikov; City Hospital N 40 Recreation Administrative District of St. Petersburg

Email: zakhariy@list.ru
ORCID iD: 0000-0001-7062-065X
SPIN-code: 7382-2036

Assistant of the Department of Pathological Anatomy; Pathologist of the Pathology Department

Russian Federation, 41, Kirochnaya str., Saint Petersburg, Russia, 191015; 9, Borisova str., Sestroretsk, Saint Petersburg, Russia, 197706

Vasilii А. Rogovoi

North-Western State Medical University named after I.I. Mechnikov

Email: rogovoy-vasiliy@mail.ru
ORCID iD: 0009-0009-9192-7592
SPIN-code: 5734-1322

Student

Russian Federation, 41, Kirochnaya str., Saint Petersburg, Russia, 191015

Oleg S. Popov

City Hospital N 40 Recreation Administrative District of St. Petersburg

Email: ospopov@outlook.com
ORCID iD: 0000-0003-1778-0165
SPIN-code: 5220-9174

Specialist

Russian Federation, 9, Borisova str., Sestroretsk, Saint Petersburg, Russia, 197706

Sergei V. Mosenko

City Hospital N 40 Recreation Administrative District of St. Petersburg

Email: neurologist@mail.ru
ORCID iD: 0000-0002-1357-4324
SPIN-code: 9543-8506

M. D., Ph. D. (Medicine), Neurologist of the Infectious Diseases Department of the Service for the Treatment of Patients with COVID-19

Russian Federation, 9, Borisova str., Sestroretsk, Saint Petersburg, Russia, 197706

Svetlana V. Apalko

City Hospital N 40 Recreation Administrative District of St. Petersburg

Email: svetlana.apalko@gmail.com
ORCID iD: 0000-0002-3853-4185
SPIN-code: 7053-2507

Ph. D. (Biology), Head of the Research Department of Innovation and Conversion Programs

Russian Federation, 9, Borisova str., Sestroretsk, Saint Petersburg, Russia, 197706

Anton S. Buchaka

City Hospital N 40 Recreation Administrative District of St. Petersburg

Email: abpao62@yandex.ru
ORCID iD: 0000-0003-3580-1492
SPIN-code: 2416-2075

Pathologist of the Pathology Department

Russian Federation, 9, Borisova str., Sestroretsk, Saint Petersburg, Russia, 197706

Sergey V. Gladchenko

City Hospital N 40 Recreation Administrative District of St. Petersburg

Email: servic_gla@mail.ru

Head of the Pathology Department

Russian Federation, 9, Borisova str., Sestroretsk, Saint Petersburg, Russia, 197706

Anna Yu. Anisenkova

Saint Petersburg State University; City Hospital N 40 Recreation Administrative District of St. Petersburg

Email: anna_anisenkova@list.ru
ORCID iD: 0000-0001-5642-621X
SPIN-code: 4476-5192

M. D., Ph. D. (Medicine), Associate Professor of Postgraduate Medical Education Department; Head of Research activities

Russian Federation, 7–9, Universitetskaya embk., Saint Petersburg, Russia, 199034; 9, Borisova str., Sestroretsk, Saint Petersburg, Russia, 197706

Sergey G. Shcherbak

Saint Petersburg State University; City Hospital N 40 Recreation Administrative District of St. Petersburg

Email: s.g.sherbak@spbu.ru
ORCID iD: 0000-0001-5036-1259
SPIN-code: 1537-9822

M. D., D. Sc. (Medicine), Professor, the Head of Postgraduate Medical Education Department; Chief Physician

Russian Federation, 7–9, Universitetskaya embk., Saint Petersburg, Russia, 199034; 9, Borisova str., Sestroretsk, Saint Petersburg, Russia, 197706

Roman V. Deev

Avtsyn research institute of human morphology of federal state budgetary scientific institution "Petrovsky national research centre of surgery"; City Hospital N 40 Recreation Administrative District of St. Petersburg

Email: romdey@gmail.com
ORCID iD: 0000-0001-8389-3841
SPIN-code: 2957-1687
Scopus Author ID: 6506120085
ResearcherId: L-1658-2015

M. D., Ph. D. (Medicine), Associate Professor, First Deputy Director

Russian Federation, 3, Tsyurupy str., Moscow, Russia, 117418; 9, Borisova str., Sestroretsk, Saint Petersburg, Russia, 197706

References

  1. Bian XW. Autopsy of COVID-19 patients in China. National Science Review. 2020;7(4):1414-1418. doi: 10.1093/nsr/nwaa123
  2. Rybakova MG, Karev VE, Kuznetsova IA. Anatomical pathology of novel coronavirus (COVID-19) infection. First impressions. Arkhiv Patologii. 2020;82(5):5‑15. doi: 10.17116/patol2020820515
  3. Deev RV, Asaulenko ZP, Emelin AM, et all. The experience of clinical and morphological analysis of fatal cases of coronavirus infection of the "first wave" (spring-autumn 2020). Profilakticheskaya i klinicheskaya meditsina. 2021;81(4):90-99. doi: 10.47843/2074-9120_2021_4_90
  4. Blagova OV, Kogan EA. Myocarditis during the SARS-CoV-2 pandemic. Moscow: Prakticheskaya meditsina; 2023. (In Russ).
  5. Jenner WJ, Kanji R, Mirsadraee S, et al. Thrombotic complications in 2928 patients with COVID-19 treated in intensive care: a systematic review. Journal of Thrombosis and Thrombolysis. 2021;51(3):595-607. doi: 10.1007/s11239-021-02394-7
  6. Jiménez D, García-Sanchez A, Rali P, et al. Incidence of VTE and Bleeding Among Hospitalized Patients With Coronavirus Disease 2019: A Systematic Review and Meta-analysis. Chest. 2021:159(3):1182-1196. doi: 10.1016/j.chest.2020.11.005
  7. Manolis AS, Manolis TA, Manolis AA, et al. COVID-19 Infection: Viral Macro- and Micro-Vascular Coagulopathy and Thromboembolism/Prophylactic and Therapeutic Management. Journal of Cardiovascular Pharmacology and Therapeutics. 2021;26(1):12-24. doi: 10.1177/1074248420958973
  8. Oba S, Hosoya T, Amamiya M, et al. Arterial and Venous Thrombosis Complicated in COVID-19: A Retrospective Single Center Analysis in Japan. Frontiers in Cardiovascular Medicine. 2021;8:767074. doi: 10.3389/fcvm.2021.767074
  9. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis. 2020;18(4):844-847. doi: 10.1111/jth.14768
  10. Fang XZ, Wang YX, Xu JQ, et al. Immunothrombosis in Acute Respiratory Dysfunction of COVID-19. Frontiers in Immunology. 2021;12:651545. doi: 10.3389/fimmu.2021.651545
  11. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Seminars in Immunopathology. 2017;39(5):517-528. doi: 10.1007/s00281-017-0639-8
  12. Niculae CM, Hristea A, Moroti R. Mechanisms of COVID-19 Associated Pulmonary Thrombosis: A Narrative Review. Biomedicines. 2023;11(3):929. doi: 10.3390/biomedicines11030929
  13. Thachil J, Srivastava A. SARS-2 Coronavirus-Associated Hemostatic Lung Abnormality in COVID-19: Is It Pulmonary Thrombosis or Pulmonary Embolism? Seminars in Thrombosis and Hemostasis. 2020;46(7):777-780. doi: 10.1055/s-0040-1712155
  14. Khismatullin RR, Ponomareva AA, Nagaswami C, et al. Pathology of lung-specific thrombosis and inflammation in COVID-19. Journal of Thrombosis and Haemostasis. 2021;19(12):3062-3072. doi: 10.1111/jth.15532
  15. Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research. 2020;191:145-147. doi: 10.1016/j.thromres.2020.04.013
  16. Llitjos JF, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. Journal of Thrombosis and Haemostasis. 2020;18(7):1743-1746. doi: 10.1111/jth.14869
  17. Suh YJ, Hong H, Ohana M, et al. Pulmonary Embolism and Deep Vein Thrombosis in COVID-19: A Systematic Review and Meta-Analysis. Radiology. 2021;298(2):E70-E80. doi: 10.1148/radiol.2020203557
  18. Porembskaya OYA, Kravchuk VN, Galchenko MI, et all. Pulmonary vascular thrombosis in COVID-19: clinical and morphological parallels. Ratsional'naya Farmakoterapiya v Kardiologii. 2022;18(4):376-384. doi: 10.20996/1819-6446-2022-08-01
  19. Singhal S, Henderson R, Horsfield K, et al. Morphometry of the human pulmonary arterial tree. Circulation Research. 1973;33(2):190-7. doi: 10.1161/01.res.33.2.190
  20. Staub NC, Schultz EL. Pulmonary capillary length in dogs, cat and rabbit. Respiration Physiology. 1968;5(3):371-8. doi: 10.1016/0034-5687(68)90028-5
  21. Studenikina ED, Ogorelysheva AI, Ruzov YaS, et all. Role of the immune system in COVID-19 pathomorphogenesis. Geny i kletki. 2020;15(4):75–87. doi: 10.23868/202012013
  22. Bain CC, Lucas CD, Rossi AG. Pulmonary macrophages and SARS-Cov2 infection. International Review of Cell and Molecular Biology. 2022;367:1-28. doi: 10.1016/bs.ircmb.2022.01.001
  23. Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. The Lancet Haematology. 2020;7(8):e575-e582. doi: 10.1016/S2352-3026(20)30216-7
  24. Hottz ED, Martins-Gonçalves R, Palhinha L, et al. Platelet-monocyte interaction amplifies thromboinflammation through tissue factor signaling in COVID-19. Blood Advances. 2022;6(17):5085-5099. doi: 10.1182/bloodadvances.2021006680
  25. Lim MS, Mcrae S. COVID-19 and immunothrombosis: Pathophysiology and therapeutic implications. Critical Reviews in Oncology/Hematology. 2021;168:103529. doi: 10.1016/j.critrevonc.2021.103529
  26. Zuo Y, Zuo M, Yalavarthi S, et al. Neutrophil extracellular traps and thrombosis in COVID-19. Journal of Thrombosis and Thrombolysis. 2021;51(2):446-453. doi: 10.1007/s11239-020-02324-z
  27. Porembskaya O, Lobastov K, Pashovkina O, et al. Thrombosis of pulmonary vasculature despite anticoagulation and thrombolysis: The findings from seven autopsies. Thrombosis Update. 2020;1:100017. doi: 10.1016/j.tru.2020.100017
  28. Hariri LP, North CM, Shih AR, et al. Lung Histopathology in Coronavirus Disease 2019 as Compared With Severe Acute Respiratory Sydrome and H1N1 Influenza: A Systematic Review. Chest. 2021;159(1):73-84. doi: 10.1016/j.chest.2020.09.259
  29. Chirskii VS, Plaminskii DYu. Functional morphology of the pulmonary vascular bed in COVID-19. In: Morfologiya na rubezhe vekov.
  30. Materials of the All-Russian Jubilee Scientific Conference dedicated to the 100th anniversary of the birth of the Hero of the Soviet Union, Major General of the Medical Service, Professor EA Dyskin; 2023 Jan 14; Saint-Petersburg. Saint-Petersburg: S. M. Kirov Military Medical Academy; 2023. P. 108-112. (In Russ).
  31. Matthews J.C., McLaughlin V. Acute right ventricular failure in the setting of acute pulmonary embolism or chronic pulmonary hypertension: a detailed review of the pathophysiology, diagnosis, and management. Current Cardiology Reviews. 2008;4(1):49-59. doi: 10.2174/157340308783565384

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies