Functional morphology of the mucociliary transport system in the bronchi of rats during postnatal ontogeny
- Authors: Pavlov A.1, Tyumina N.A.1
-
Affiliations:
- Федеральное государственное бюджетное образовательное учреждение высшего образования «Ярославский государственный медицинский университет» Министерства здравоохранения Российской Федерации (ФГБОУ ВО ЯГМУ Минздрава России)
- Section: Original Study Articles
- Submitted: 13.03.2025
- Accepted: 27.03.2025
- Published: 01.06.2025
- URL: https://j-morphology.com/1026-3543/article/view/677130
- DOI: https://doi.org/10.17816/morph.677130
- ID: 677130
Cite item
Abstract
BACKGROUND: Age-related changes in the mucociliary transport system (MCTS) of the airways may play a significant role in the pathogenesis of respiratory diseases. However, studies examining the structural and functional parameters of the bronchial epithelium throughout postnatal ontogeny, using uniform methodological approaches, are lacking. AIM: To study the age-related patterns of postnatal morphogenesis of the mucociliary transport system in the bronchi of rats based on a structural and functional analysis of its elements
METHODS: The respiratory epithelium of the main, lobar, and segmental bronchi from 76 Wistar rats at ages from 1 day to 26 months was examined using methods such as assessment of ciliary activity, light and electron microscopy, immunocytochemistry, morphometry.
RESULTS: The bronchial tree of newborn rats is lined with a simple epithelium predominantly composed of undifferentiated cells (59-62%) and a small number of ciliated cells (21-26%). Differentiation of MCTS elements is most pronounced during the first month and develops asynchronously: in the first two weeks the number of ciliated cells increases by 2.2-2.7 times; the formation of the goblet cell occurs between days 14 and 30. The frequency of ciliary beating is highest in newborn animals (25-25.9 Hz), decreasing to 14.9-18.6 Hz in one-month-old rats and stabilizing at 13.2-16.2 Hz for all subsequent time points. The completion of the typical structure of the respiratory epithelium occurs during puberty: starting from 3 months and continuing through the reproductive period (6-14 months), its main quantitative structural and functional characteristics stabilize. In aging and old animals, the content of ciliated and goblet cells reaches its peak values, while the motility of the ciliary apparatus is preserved. Concurrently, a decrease in the number of proliferating cells, an increase in hypertrophied ciliated cells, and the development of ultrastructural signs of epithelial cell damage are recorded.
CONCLUSION: Postnatal morphogenesis of the MCTS in the bronchi continues throughout the animal's life, with histogenetic processes being most pronounced during the first month of life. After the definitive structure of the epithelial layer is established, subsequent age-related transformations aim to maintain a stable level of mucociliary clearance throughout the animals' later life.
About the authors
Alexey Pavlov
Федеральное государственное бюджетное образовательное учреждение высшего образования «Ярославский государственный медицинский университет» Министерства здравоохранения Российской Федерации (ФГБОУ ВО ЯГМУ Минздрава России)
Author for correspondence.
Email: pavlov@ysmu.ru
ORCID iD: 0000-0001-8227-9997
SPIN-code: 8854-7083
Doctor of Medical Sciences, Professor, Head of the Department of Histology, Cytology and Embryology
Russian Federation, 150000, Россия, Ярославль, ул.Революционная,5Natalya Andreevna Tyumina
Федеральное государственное бюджетное образовательное учреждение высшего образования «Ярославский государственный медицинский университет» Министерства здравоохранения Российской Федерации (ФГБОУ ВО ЯГМУ Минздрава России)
Email: Natellamail@mail.ru
ORCID iD: 0000-0001-7001-0851
SPIN-code: 8839-8300
Старший преподаватель; кафедра гистологии, цитологии и эмбриологии
Russian Federation, 150000, Россия, Ярославль, ул.Революционная,5References
- Zavalii M. A. Morphogenesis of ciliated epithelium. Rinologiya. 2014;1: 38-49. (In Russ.)
- Whitsett J.A. Airway Epithelial Differentiation and Mucociliary Clearance. Ann Am Thorac Soc. 2018; 15(Suppl 3):143-148. doi: 10.1513/AnnalsATS.201802-128AW.
- de Vries M., Nwozor K.O., Muizer K., Wisman M., Timens W, van den Berge M, Faiz A, Hackett TL, Heijink IH, Brandsma CA. The relation between age and airway epithelial barrier function. Respir Res. 2022 Mar 3;23(1):43. doi: 10.1186/s12931-022-01961-7.
- Yuksel H., Turkeli A. Airway epithelial barrier dysfunction in the pathogenesis and prognosis of respiratory tract diseases in childhood and adulthood. Tissue Barriers. 2017 Oct 2;5(4):e1367458. doi: 10.1080/21688370.2017.1367458.
- Pavlov A.V., Yesev L.I. Histophysiology of the tracheal epithelium in rats in postnatal ontogenesis. Morfologiia. 2014; 146 (6): 60-65.
- Toskala, E., Smiley-Jewell, S.M., Wong, V.J., King, D., & Plopper, C.G., Ortega-Martínez M., Rodríguez-Flores L.E., Ancer-Arellano A., et al. Analysis of Cell Turnover in the Bronchiolar Epithelium Through the Normal Aging Process. Lung. 2016;194(4):581-587. doi: 10.1007/s00408-016-9890-3.
- Ortega-Martínez M., Rodríguez-Flores L.E., Ancer-Arellano A., Cerda-Flores R.M., de-la-Garza-González C., Ancer-Rodríguez J., Jaramillo-Rangel G. Analysis of Cell Turnover in the Bronchiolar Epithelium Through the Normal Aging Process. Lung. 2016 Aug;194(4):581-7. doi: 10.1007/s00408-016-9890-3.
- Zapadnyuk I.P., Zapadnyuk V.I., Zakharia E.A. Laboratory animals. Breeding, housing, use in experiments. 3rd ed. Kyiv: Vyscha shkola; 1983. (In Russ.)
- Pavlov A.V., Korableva T.V., Esev L.I., Fokanova O.A., Lukashevich Y.A. Methodical approaches to experimental study of histophysiology of mucociliary transport system in the uterine tubes. Morfologiia. 2019; 155 (1): 73-76.
- Kemoklidze K.G. Universal histological counter. Version 2.0: certificate of state registration of computer programs No. 2012617618 Russian Federation. Application No. 2012615714; application date 09.07.2012; registration date 23.08.2012.
- Wansleeben C., Bowie E., Hotten D.F., Yu Y.R., Hogan B.L. Age-related changes in the cellular composition and epithelial organization of the mouse trachea. PLoS One. 2014 Mar 27;9(3):e93496. doi: 10.1371/journal.pone.0093496.
- O'Callaghan C., Smith K., Wilkinson M., Morgan D., Priftis K. Ciliary beat frequency in newborn infants. Arch Dis Child. 1991 Apr;66(4 Spec No):443-4. doi: 10.1136/adc.66.4_spec_no.443.
- Francis R.J., Chatterjee B., Loges N.T., Zentgraf H., Omran H., Lo C.W. Initiation and maturation of cilia-generated flow in newborn and postnatal mouse airway. Am J Physiol Lung Cell Mol Physiol. 2009 Jun;296(6):L1067-75. doi: 10.1152/ajplung.00001.2009.
- Yager J.A., Ellman H., Dulfano M.J. Human ciliary beat frequency at three levels of the tracheobronchial tree. Am. Revol. Respir. Dis. 1980; 121 (4): 661-665. doi: 10.1164/arrd.1980.121.4.661.
- Joki S., Saano V. Influence of ageing on ciliary beat frequency and on ciliary response to leukotriene D4 in guinea-pig tracheal epithelium. Clin Exp Pharmacol Physiol. 1997 Feb;24(2):166-9. doi: 10.1111/j.1440-1681.1997.tb01802.x.
- Ho J.C., Chan K.N., Hu W.H., Lam W.K., Zheng L., Tipoe G.L, Sun J., Leung R., Tsang KW. The effect of aging on nasal mucociliary clearance, beat frequency, and ultrastructure of respiratory cilia. Am J Respir Crit Care Med. 2001 Mar;163(4):983-8. doi: 10.1164/ajrccm.163.4.9909121.
- Bailey K.L, Bonasera S.J., Wilderdyke M., Hanisch B.W, Pavlik J.A., DeVasure J., Robinson J.E., Sisson J.H., Wyatt T.A. Aging causes a slowing in ciliary beat frequency, mediated by PKCε. Am J Physiol Lung Cell Mol Physiol. 2014 Mar 15;306(6):L584-9. doi: 10.1152/ajplung.00175.2013.
- Kozlova A.N. Morphofunctional characteristics of bronchial epithelium in human ontogenesis and under experimental conditions [dissertation abstract]. Orenburg; 1997. (In Russ.)
Supplementary files
