Morphological Features of the Kidneys in INSRR Knockout Mice Under Bicarbonate Load

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The insulin receptor-related receptor (IRR), a receptor tyrosine kinase, functions as a sensor of extracellular alkaline pH and is involved in renal bicarbonate excretion. High IRR expression has been detected in β-intercalated cells of the kidney, located in the distal tubules where bicarbonate secretion occurs. To create a new model for investigating sensitivity to pH changes, a unique INSRR knockout mouse line was developed on a C57BL/6 background.

AIM: To analyze morphological changes in kidney tissue in INSRR knockout mice compared with wild-type animals under normal conditions and during metabolic alkalosis.

METHODS: The study used littermate mice from a single generation, with genotypes confirmed by polymerase chain reaction. Two mouse lines were used in the experiment: INSRR knockout and wild-type. The animals were studied under two conditions—baseline and experimentally induced alkalosis. Morphometric analysis was performed on hematoxylin and eosin–stained kidney cryosections. The number of macrophages in kidney tissue was evaluated using immunohistochemical staining.

RESULTS: Morphometric analysis revealed that INSRR gene knockout did not lead to significant pathological alterations in kidney structure. However, significant differences were observed in parenchymal thickness, glomerular area, and collecting duct diameter in sections taken at the level of the renal pelvis. Differences were observed both when comparing the two mouse lines under normal conditions and during experimental alkalosis. Additionally, kidney size in knockout mice was smaller than in wild-type animals. Immunohistochemical analysis revealed no statistically significant differences in the number of CD206-positive (anti-inflammatory) macrophages in the kidneys under either normal conditions or experimental alkalosis.

CONCLUSION: Morphometric analysis of histological sections revealed increased parenchymal thickness in receptor tyrosine kinase knockout mice compared with wild-type animals under experimental alkalosis. Overall, knockout of the IRR receptor tyrosine kinase gene did not result in major pathological changes in kidney architecture. Thus, this genetically modified mouse line may serve as a model for physiological and molecular biological studies of metabolic alkalosis and its associated pathological processes.

Full Text

Restricted Access

About the authors

Elena A. Gantsova

Petrovsky National Research Centre of Surgery; Peoples’ Friendship University of Russia

Author for correspondence.
Email: gantsova@mail.ru
ORCID iD: 0000-0003-4925-8005
SPIN-code: 6486-5795
Russian Federation, Moscow; Moscow

Oxana V. Serova

Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: oxana.serova@gmail.com
ORCID iD: 0000-0002-4941-8913
SPIN-code: 8459-4496

Cand. Sci. (Chemistry)

Russian Federation, Moscow

Igor E. Deev

Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: deyevie@gmail.com
ORCID iD: 0000-0002-2041-808X
SPIN-code: 3242-5528

Dr. Sci. (Biology)

Russian Federation, Moscow

Andrey V. Elchaninov

Petrovsky National Research Centre of Surgery; Peoples’ Friendship University of Russia; Kulakov Research Center for Obstetrics, Gynecology and Perinatology

Email: elchandrey@yandex.ru
ORCID iD: 0000-0002-2392-4439
SPIN-code: 5160-9029

Dr. Sci. (Medicine), Associate Professor

Russian Federation, Moscow; Moscow; Moscow

Timur H. Fatkhudinov

Petrovsky National Research Centre of Surgery; Peoples’ Friendship University of Russia; Kulakov Research Center for Obstetrics, Gynecology and Perinatology

Email: fatkhudinov_tkh@pfur.ru
ORCID iD: 0000-0002-6498-5764
SPIN-code: 7919-8430

Dr. Sci. (Medicine), Professor

Russian Federation, Moscow; Moscow; Moscow

References

  1. Korotkova DD, Gantsova EA, Goryashchenko AS, et al. Insulin receptor-related receptor regulates the rate of early development in Xenopus laevis. Int J Mol Sci. 2022;23(16):9250. doi: 10.3390/ijms23169250
  2. Deyev IE, Sohet F, Vassilenko KP, et al. Insulin receptor-related receptor as an extracellular alkali sensor. Cell Metab. 2011;13(6):679–689. doi: 10.1016/j.cmet.2011.03.022
  3. Serova OV, Gantsova EA, Deyev IE, Petrenko AG. The value of pH sensors in maintaining homeostasis of the nervous system. Russian Journal of Bioorganic Chemistry. 2020;46(4):369–384. (In Russ.) doi: 10.31857/S0132342320040260 EDN: PYRUCK
  4. Petrenko AG, Zozulya SA, Deyev IE, Eladari D. Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid–base balance. Biochim Biophys. 2013;1834(10):2170–2175. doi: 10.1016/j.bbapap.2012.11.011
  5. Alva S, Divyashree M, Kamath J. et al. A study on effect of bicarbonate supplementation on the progression of chronic kidney disease. Indian J Nephrol. 2020;30(2):91–97. doi: 10.4103/ijn.IJN_93_19
  6. Dubey AK, Sahoo J, Vairappan B, et al. Correction of metabolic acidosis improves muscle mass and renal function in chronic kidney disease stages 3 and 4: a randomized controlled trial. Nephrol Dial Transplant. 2020;35(1):121–129. doi: 10.1093/ndt/gfy214
  7. Di Iorio BR, Bellasi A, Raphael KL, et al. Treatment of metabolic acidosis with sodium bicarbonate delays progression of chronic kidney disease: the UBI Study. J Nephrol. 2019;32(6):989–1001. doi: 10.1007/s40620-019-00656-5
  8. Goraya N, Munoz-Maldonado Y, Simoni J, Wesson DE. Fruit and vegetable treatment of chronic kidney disease-related metabolic acidosis reduces cardiovascular risk better than sodium bicarbonate. Am J Nephrol. 2019;49(6):438–448. doi: 10.1159/000500042
  9. Mannon EC, O’Connor PM. Alkali supplementation as a therapeutic in chronic kidney disease: What mediates protection? Am J Physiol Renal Physiol. 2020;319(6):F1090–F1104. doi: 10.1152/ajprenal.00343.2020
  10. Gantsova EA, Serova OV, Eladari D, et al. A comparative kidney transcriptome analysis of bicarbonate-loaded insrr-null mice. Curr Issues Mol Biol. 2023;45(12):9709–9722. doi: 10.3390/cimb45120606
  11. Chen S, Saeed AFUH, Liu Q, et al. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 2023;8(1):207. doi: 10.1038/s41392-023-01452-1
  12. Wu H, Yin Y, Hu X, et al. Effects of environmental pH on macrophage polarization and osteoimmunomodulation. ACS Biomater Sci Eng. 2019;5(10):5548–5557. doi: 10.1021/acsbiomaterials.9b01181
  13. Genini A, Mohebbi N, Daryadel A, et al. Adaptive response of the murine collecting duct to alkali loading. Pflugers Arch. 2020;472(8):1079–1092. doi: 10.1007/s00424-020-02423-z
  14. Tobar A, Ori Y, Benchetrit S, et al. Proximal tubular hypertrophy and enlarged glomerular and proximal tubular urinary space in obese subjects with proteinuria. PLoS One. 2013;8(9):e75547. doi: 10.1371/journal.pone.0075547
  15. Chen H, Birnbaum Y, Ye R, et al. SGLT2 inhibition by Dapagliflozin attenuates diabetic ketoacidosis in mice with type-1 diabetes. Cardiovasc Drugs Ther. 2022;36(6):1091–1108. doi: 10.1007/s10557-021-07243-6
  16. Lu YP, Zhang ZY, Wu HW, et al. SGLT2 inhibitors improve kidney function and morphology by regulating renal metabolic reprogramming in mice with diabetic kidney disease. J Transl Med. 2022;20(1):420. doi: 10.1186/s12967-022-03629-8
  17. Liu C, Wang X. Clinical utility of ultrasonographic evaluation in acute kidney injury. Transl Androl Urol. 2020;9(3):1345–1355. doi: 10.21037/tau-20-831
  18. Gupta P, Chatterjee S, Debnath J, et al. Ultrasonographic predictors in chronic kidney disease: A hospital based case control study. J Clin Ultrasound. 2021;49(7):715–719. doi: 10.1002/jcu.23026
  19. Fenton RA, Knepper MA. Mouse models and the urinary concentrating mechanism in the new millennium. Physiol Rev. 2007;87(4):1083–1112. doi: 10.1152/physrev.00053.2006
  20. Gantsova E, Serova O, Vishnyakova P, et al. Mechanisms and physiological relevance of acid-base exchange in functional units of the kidney. PeerJ. 2024;12:e17316. doi: 10.7717/peerj.17316
  21. Amlal H, Ledoussal C, Sheriff S, et al. Downregulation of renal AQP2 water channel and NKCC2 in mice lacking the apical Na+-H+ exchanger NHE3. J Physiol. 2003;553(Pt 2):511–522. doi: 10.1113/jphysiol.2003.053363
  22. Takahashi N, Chernavvsky DR, Gomez RA, et al. Uncompensated polyuria in a mouse model of Bartter’s syndrome. Proc Natl Acad Sci USA. 2000;97(10):5434–5439. doi: 10.1073/pnas.090091297
  23. Lorenz JN, Baird NR, Judd LM, et al. Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter’s syndrome. J Biol Chem. 2002;277(40):37871–37880. doi: 10.1074/jbc.M205627200
  24. Percie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. BMC Vet Res. 2020;16(1):242. doi: 10.1186/s12917-020-02451-y

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Kidney cryosection morphology in mice: a — wild-type mouse under normal conditions; b — wild-type mouse under bicarbonate load; c — INSRR knockout mouse under normal conditions; d — INSRR knockout mouse under bicarbonate load. Hematoxylin and eosin staining, magnification ×20; scale bar — 100 μm.

Download (1MB)
3. Fig. 2. Morphometric characteristics of kidneys: a — relative parenchymal thickness (μm); b — relative glomerular area (μm2); c — collecting duct lumen diameter (μm). Group labels: WT_H2O — wild-type mice under normal conditions; WT_NaHCO3 — wild-type mice under alkaline load; KO_H₂O — INSRR knockout mice under normal conditions; KO_NaHCO3 — INSRR knockout mice under alkaline load. Data are presented as mean ± standard deviation; * — statistically significant differences, p < 0.05.

Download (175KB)
4. Fig. 3. Immunohistochemical analysis of CD86-positive macrophages in mouse kidneys: a — wild-type mouse under normal conditions; b — wild-type mouse under bicarbonate load; c — INSRR knockout mouse under normal conditions; d — INSRR knockout mouse under bicarbonate load. Green fluorescence — CD86-positive macrophages (fluorescent dye FITC); blue fluorescence — cell nuclei stained with DAPI. Magnification ×20; scale bar — 50 μm.

Download (434KB)
5. Fig. 4. Immunohistochemical analysis of CD206-positive macrophages in mouse kidneys: a — wild-type mouse under normal conditions; b — wild-type mouse under bicarbonate load; c — INSRR knockout mouse under normal conditions; d — INSRR knockout mouse under bicarbonate load. Green fluorescence — CD206-positive macrophages (fluorescent dye FITC); blue fluorescence — cell nuclei stained with DAPI. Magnification ×20; scale bar — 50 μm.

Download (341KB)
6. Fig. 5. Number of CD206-positive macrophages in mouse kidneys. Group labels: WT_H2O — wild-type mice under normal conditions; WT_NaHCO3 — wild-type mice under alkaline load; KO_H2O — INSRR knockout mice under normal conditions; KO_NaHCO3 — INSRR knockout mice under alkaline load. Data are presented as mean ± standard deviation.

Download (56KB)

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Периодический печатный журнал зарегистрирован как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): 0110212 от 08.02.1993.
Сетевое издание зарегистрировано как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): ЭЛ № ФС 77 - 84733 от 10.02.2023.