МОРФОФУНКЦИОНАЛЬНЫЕ ИЗМЕНЕНИЯ ПИРАМИДНЫХ НЕЙРОНОВ РАЗЛИЧНЫХ ПОЛЕЙ ГИППОКАМПА ПРИ ИШЕМИЧЕСКОМ ПОСТКОНДИЦИОНИРОВАНИИ



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Цель настоящей работы — исследование влияния ишемического посткондиционирования (ИПостК) на жизнеспособность различных полей нейронов гиппокампа, а также на активность сукцинатдегидрогеназы (СДГ) в их цитоплазме у 30 песчанок монгольских ( Meriones unguiculatus). Ишемическое повреждение головного мозга моделировали билатеральной окклюзией общих сонных артерий на 7 мин. ИПостК воспроизводили с помощью трех эпизодов реперфузии—ишемии по 15/15 с. Спустя 48 ч реперфузии проводили морфометрический анализ и гистоэнзимологически определяли активность СДГ в цитоплазме пирамидных нейронов полей СА1, СА2, СА3, СА4 гиппокампа. Результаты показали, что 7-минутная ишемия приводит к значимому уменьшению количества неизмененных нейронов в полях СА1 (до 24%) и СА3 (до 56%) гиппокампа, а также во всех полях гиппокампа способствует увеличению активности СДГ в их цитоплазме, по сравнению с показателем у ложнооперированных животных. Применение ИПостК приводит к значимому увеличению количества (до 52,9%, Р<0,01) неизмененных нейронов в поле СА1 и (до 88%, Р<0,05) в поле СА3 гиппокампа и сопровождается понижением активности СДГ в сохранивших жизнеспособность нейронах всех полей гиппокампа.

Полный текст

Доступ закрыт

Об авторах

Наталия Сергеевна Щербак

Институт сердечно-сосудистых заболеваний

Email: ShcherbakNS@yandex.ru
кафедра факультетской терапии

Михаил Михайлович Галагудза

Институт экспериментальной медицины, Федеральный Центр сердца, крови и эндокринологии им. В. А. Алмазова

Email: galagoudza@mail.ru
197034, Санкт-Петербург, ул. Аккуратова, 2

Галина Юрьевна Юкина

Научно-исследовательский центр

Email: pipson@inbox.ru

Евгений Робертович Баранцевич

Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова

Email: professorerb@yandex.ru
кафедра неврологии и мануальной медицины 197022, Санкт-Петербург, ул. Л. Толстого, 6–8

Владимир Викторович Томсон

Научно-исследовательский центр

Email: nic.spb@mail.ru

Евгений Владимирович Шляхто

Институт экспериментальной медицины, Федеральный Центр сердца, крови и эндокринологии им. В. А. Алмазова

Email: Shlyakhto@inbox.ru
197034, Санкт-Петербург, ул. Аккуратова, 2

Список литературы

  1. Журавлева Т. Б. и Прочуханов Р. А. Введение в количественную гистохимию ферментов. М., Медицина, 1978.
  2. Лойда З., Госсрау Р. и Шиблер Т. Гистохимия ферментов. Лабораторные методы. М., Мир, 1982.
  3. Мартынюк В.C. и Ислямов Р. И. Влияние комбинированного действия слабого низкочастотного магнитного поля и гипокинезии на активность НАДH-дегидрогеназ и сукцинатдегидрогеназы в различных отделах головного мозга крыс. Физика живого, 2009, т. 17, № 2, с. 89–93.
  4. Щербак Н. С., Галагудза М. М., Кузьменков А. Н. и др. Морфофункциональные изменения поля СА1 гиппокампа у монгольских песчанок при применении ишемического посткондиционирования. Морфология, 2012, т. 142. вып. 5, с. 12–16.
  5. Araki T., Kato H., Kogure K. and Kanai Y. Long-term changes in gerbil brain neurotransmitter receptors following transient cerebral ischaemia. Br. J. Pharmacol., 1992, v. 107, № 2, p. 437–42.
  6. Bagley P. R., Tucker S. P., Nolan C. et al. Anatomical mapping of glucose transporter protein and pyruvate dehydrogenase in rat brain: an immunogold study. Brain Res., 1989, v. 499, № 2, p. 214–224.
  7. Bolli R., Li Q. H., Tang X. L. et al. The late phase of preconditioning and its natural clinical application — gene therapy. Heart Fail Rev., 2007, v. 12, № 3–4, p. 189–199.
  8. Borges N., Cerejo A., Santos A. et al. Changes in rat cerebral mitochondrial succinate dehydrogenase activity after brain trauma. Int. J. Neurosci., 2004, v. 114, № 2, p. 217–227.
  9. Cafe C., Torri C., Gatti S. et al. Changes in non-synaptosomal and synaptosomal mitochondrial membrane-linked enzymatic activities after transient cerebral ischemia. Neurochem. Res., 1994, v. 19, p. 1551–1555.
  10. Chalmers G. R., Roy R. R. and Edgerton V. R. Adaptability of the oxidative capacity of motoneurons. Brain Res., 1992, v. 570, № 1–2, p. 1–10.
  11. Dave K. R., Saul I., Busto R. et al. Ischemic preconditioning preserves mitochondrial function after global cerebral ischemia in rat hippocampus. J. Cereb. Blood Flow Metab., 2001, v. 21, № 12, p. 1401–1410.
  12. Du C., Hu R., Csernansky C. A. et al. Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J. Cereb Blood Flow Metab., 1996, v. 16, p. 195–201.
  13. Jenkins B. G., Brouillet E., Chen Y. I. et al. Non-invasive neurochemical analysis of focal excitotoxic lesions in models of neurogenerative illness using spectroscopic imaging. J. Cereb. Blood Flow Metab., 1996, v. 16, p. 450–461.
  14. Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res., 1982, v. 239, p. 57–69.
  15. Kuhmonen J., Pokorný J., Miettinen R. et al. Neuroprotective effects of dexmedetomidine in the gerbil hippocampus after transient global ischemia. Anesthesiology, 1997, v. 87, № 2, p. 371–377.
  16. Kuroiwa T., Terakado M., Yamaguchi T. et al. The pyramidal cell layer of sector CA 1 shows the lowest hippocampal succinate dehydrogenase activity in normal and postischemic gerbils. Neurosci. Lett., 1996, v. 206, № 2–3, p. 117–120.
  17. Li Y., Cai M., Xu Y. et al. Late phase ischemic preconditioning preserves mitochondrial oxygen metabolism and attenuates postischemic myocardialtissue hyperoxygenation. Life Sci., 2011, v. 88, p. 57–64.
  18. Linnik M., Miller J., Sprinkle-Cavallo J. et al. Apoptotic DNA fragmentation in the rat cerebral cortex induced by permanent middle cerebral artery occlusion. Brain Res. Mol. Brain Res., 1995, v. 32, p. 116–124.
  19. Loskota W. J., Lomax P. and Verity M. A. A Stereotaxic Atlas of the Mongolian Gerbil Brain. Ann Arbor, Ann Arbor Science Publishers., 1974.
  20. O’Neill M. J. and Clemens J. A. Rodent models of global cerebral ischemia. Curr Protoc. Neurosci., 2001, p. 9.5.1–9.5.25.
  21. Radenovic L., Selakovic V., Janac B. and Andjus P. R. Neuroprotective efficiency of NMDA receptor blockade in the striatum and CA3 hippocampus after various durations of cerebral ischemia in gerbils. Acta Physiol. Hung., 2011, v. 98, № 1, p. 32–44.
  22. Schinder A. F., Olson E. C., Spitzer N. C. and Montal M. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci., 1996, v. 16, p. 6125–6133.
  23. Shimizu N., Morikawa N. and Ishi Y. Histochemical studies of succinic dehydrogenase and cytochrome oxidase of the rabbit brain, with special reference to the results in the paraventricular structures. J. Comp. Neurol., 1957, v. 108, № 1, p. 1–21.
  24. Sims N. R. and Pulsinelli W. A. Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat. J. Neurochem., 1987, v. 49, p. 1367–1374.
  25. Sugino T., Nozaki K., Takagi Y. and Hashimoto N. 3-Nitropropionic acid induces ischemic tolerance in gerbil hippocampus in vivo. Neurosci. Lett., 1999, v. 259, p. 9–12
  26. Wiegand F., Liao W., Busch С. et al. Respiratory Chain Inhibition Induces Tolerance to Focal Cerebral Ischemia. J. Cereb. Blood Flow Metab., 1999, v. 19, p. 1229–1237.
  27. Wree A., Schleicher A., Zilles K. and Beck T. Local cerebral glucose utilization in the Ammon’s horn and dentate gyrus of the rat brain. Histochemistry. 1988, v. 88, № 3–6, p. 415–426.
  28. Zeevalk G. D., Derr Yellin E. and Nicklas W. J. Relative vulnerability of dopamine and GABA neurons in mesencephalic culture to inhibition of succinate dehydrogenase by malonate and 3-nitropropionic acid and protection by NMDA receptor blockade. J. Pharmacol. Exp. Ther., 1995, v. 275, p. 1124–1130.
  29. Zhao H., Ren C., Chen X. and Shen J. From rapid to delayed and remote postconditioning: the evolving concept of ischemic postconditioning in brain ischemia. Curr. Drug. Targets, 2012, v. 13, p. 173–187.
  30. Zhao H., Sapolsky R. M. and Steinberg G. K. Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J. Cereb. Blood Flow Metab., 2006, v. 26, p. 1114–1121.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2013



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах