MORPHO-FUNCTIONAL CHANGES OF THE PYRAMIDAL NEURONS IN VARIOUS HIPPOCAMPAL AREAS AFTER THE ISCHEMIC POSTCONDITIONING

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The aim of this study was to determine the effect of ischemic postconditioning (IP) on the viability of neurons in various hippocampal areas as well as on cytoplasmic activity of succinatedehydrogenase (SDH) in these cells in 30 male Mongolian gerbils (Meriones unguiculatus). Ischemic brain injury was induced by bilateral common carotid artery occlusion for 7 min. IP protocol comprised 3 cycles of 15 s of reperfusion/15 s of ischemia. After reperfusion for 48 h, the morphometric analysis was conducted, and SDH cytoplasmic activity was assessed using quantitative histochemistry in the pyramidal neurons of the hippocampal areas CA1, СА2, СА3, СА4. The experiment has demonstrated that 7-minute-long ischemia resulted in a significant decrease in the number of viable neurons in CA1 area (up to 24%) and in the СА3 (to 56%) of the hippocampus; besides, it lead to the elevation of SDH activity in the cytoplasm of the neurons in all the hippocampal areas as compared to that in sham-operated animals. The application of IP significantly increased the number of viable neurons in CA1 (up to 52.9%, P<0,01) and in СА3 areas of the hippocampus(up to 88%, P<0,05), and it was accompanied by reduction of SDH activity in surviving neurons in all the hippocampal areas.

Full Text

Restricted Access

References

  1. Журавлева Т. Б. и Прочуханов Р. А. Введение в количественную гистохимию ферментов. М., Медицина, 1978.
  2. Лойда З., Госсрау Р. и Шиблер Т. Гистохимия ферментов. Лабораторные методы. М., Мир, 1982.
  3. Мартынюк В.C. и Ислямов Р. И. Влияние комбинированного действия слабого низкочастотного магнитного поля и гипокинезии на активность НАДH-дегидрогеназ и сукцинатдегидрогеназы в различных отделах головного мозга крыс. Физика живого, 2009, т. 17, № 2, с. 89–93.
  4. Щербак Н. С., Галагудза М. М., Кузьменков А. Н. и др. Морфофункциональные изменения поля СА1 гиппокампа у монгольских песчанок при применении ишемического посткондиционирования. Морфология, 2012, т. 142. вып. 5, с. 12–16.
  5. Araki T., Kato H., Kogure K. and Kanai Y. Long-term changes in gerbil brain neurotransmitter receptors following transient cerebral ischaemia. Br. J. Pharmacol., 1992, v. 107, № 2, p. 437–42.
  6. Bagley P. R., Tucker S. P., Nolan C. et al. Anatomical mapping of glucose transporter protein and pyruvate dehydrogenase in rat brain: an immunogold study. Brain Res., 1989, v. 499, № 2, p. 214–224.
  7. Bolli R., Li Q. H., Tang X. L. et al. The late phase of preconditioning and its natural clinical application — gene therapy. Heart Fail Rev., 2007, v. 12, № 3–4, p. 189–199.
  8. Borges N., Cerejo A., Santos A. et al. Changes in rat cerebral mitochondrial succinate dehydrogenase activity after brain trauma. Int. J. Neurosci., 2004, v. 114, № 2, p. 217–227.
  9. Cafe C., Torri C., Gatti S. et al. Changes in non-synaptosomal and synaptosomal mitochondrial membrane-linked enzymatic activities after transient cerebral ischemia. Neurochem. Res., 1994, v. 19, p. 1551–1555.
  10. Chalmers G. R., Roy R. R. and Edgerton V. R. Adaptability of the oxidative capacity of motoneurons. Brain Res., 1992, v. 570, № 1–2, p. 1–10.
  11. Dave K. R., Saul I., Busto R. et al. Ischemic preconditioning preserves mitochondrial function after global cerebral ischemia in rat hippocampus. J. Cereb. Blood Flow Metab., 2001, v. 21, № 12, p. 1401–1410.
  12. Du C., Hu R., Csernansky C. A. et al. Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J. Cereb Blood Flow Metab., 1996, v. 16, p. 195–201.
  13. Jenkins B. G., Brouillet E., Chen Y. I. et al. Non-invasive neurochemical analysis of focal excitotoxic lesions in models of neurogenerative illness using spectroscopic imaging. J. Cereb. Blood Flow Metab., 1996, v. 16, p. 450–461.
  14. Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res., 1982, v. 239, p. 57–69.
  15. Kuhmonen J., Pokorný J., Miettinen R. et al. Neuroprotective effects of dexmedetomidine in the gerbil hippocampus after transient global ischemia. Anesthesiology, 1997, v. 87, № 2, p. 371–377.
  16. Kuroiwa T., Terakado M., Yamaguchi T. et al. The pyramidal cell layer of sector CA 1 shows the lowest hippocampal succinate dehydrogenase activity in normal and postischemic gerbils. Neurosci. Lett., 1996, v. 206, № 2–3, p. 117–120.
  17. Li Y., Cai M., Xu Y. et al. Late phase ischemic preconditioning preserves mitochondrial oxygen metabolism and attenuates postischemic myocardialtissue hyperoxygenation. Life Sci., 2011, v. 88, p. 57–64.
  18. Linnik M., Miller J., Sprinkle-Cavallo J. et al. Apoptotic DNA fragmentation in the rat cerebral cortex induced by permanent middle cerebral artery occlusion. Brain Res. Mol. Brain Res., 1995, v. 32, p. 116–124.
  19. Loskota W. J., Lomax P. and Verity M. A. A Stereotaxic Atlas of the Mongolian Gerbil Brain. Ann Arbor, Ann Arbor Science Publishers., 1974.
  20. O’Neill M. J. and Clemens J. A. Rodent models of global cerebral ischemia. Curr Protoc. Neurosci., 2001, p. 9.5.1–9.5.25.
  21. Radenovic L., Selakovic V., Janac B. and Andjus P. R. Neuroprotective efficiency of NMDA receptor blockade in the striatum and CA3 hippocampus after various durations of cerebral ischemia in gerbils. Acta Physiol. Hung., 2011, v. 98, № 1, p. 32–44.
  22. Schinder A. F., Olson E. C., Spitzer N. C. and Montal M. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci., 1996, v. 16, p. 6125–6133.
  23. Shimizu N., Morikawa N. and Ishi Y. Histochemical studies of succinic dehydrogenase and cytochrome oxidase of the rabbit brain, with special reference to the results in the paraventricular structures. J. Comp. Neurol., 1957, v. 108, № 1, p. 1–21.
  24. Sims N. R. and Pulsinelli W. A. Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat. J. Neurochem., 1987, v. 49, p. 1367–1374.
  25. Sugino T., Nozaki K., Takagi Y. and Hashimoto N. 3-Nitropropionic acid induces ischemic tolerance in gerbil hippocampus in vivo. Neurosci. Lett., 1999, v. 259, p. 9–12
  26. Wiegand F., Liao W., Busch С. et al. Respiratory Chain Inhibition Induces Tolerance to Focal Cerebral Ischemia. J. Cereb. Blood Flow Metab., 1999, v. 19, p. 1229–1237.
  27. Wree A., Schleicher A., Zilles K. and Beck T. Local cerebral glucose utilization in the Ammon’s horn and dentate gyrus of the rat brain. Histochemistry. 1988, v. 88, № 3–6, p. 415–426.
  28. Zeevalk G. D., Derr Yellin E. and Nicklas W. J. Relative vulnerability of dopamine and GABA neurons in mesencephalic culture to inhibition of succinate dehydrogenase by malonate and 3-nitropropionic acid and protection by NMDA receptor blockade. J. Pharmacol. Exp. Ther., 1995, v. 275, p. 1124–1130.
  29. Zhao H., Ren C., Chen X. and Shen J. From rapid to delayed and remote postconditioning: the evolving concept of ischemic postconditioning in brain ischemia. Curr. Drug. Targets, 2012, v. 13, p. 173–187.
  30. Zhao H., Sapolsky R. M. and Steinberg G. K. Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J. Cereb. Blood Flow Metab., 2006, v. 26, p. 1114–1121.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies