НЕЙРОЭНДОКРИННАЯ РЕГУЛЯЦИЯ ФУНКЦИЙ МИНДАЛЕВИДНОГО ТЕЛА МОЗГА: РОЛЬ ДОФАМИНА И ПОЛОВЫХ СТЕРОИДОВ



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Обзор содержит сведения, характеризующие представительство дофаминергической системы в миндалевидном теле (МТ) и ее функциональное значение в осуществлении нейроэндокринных функций МТ как репродуктивного центра. Приведенные данные свидетельствуют о совместном участии дофамина и половых стероидов в регуляции деятельности МТ, оказывающего модулирующее влияние на центры секреции и выделения гонадотропинов и центры полового поведения гипоталамической области мозга. Показано, что большую роль при этом играет поступающая в МТ хемосенсорная информация из обонятельных луковиц, функциональная активность дофаминергической системы которых также контролируется содержанием половых стероидов. Приведены также сведения, отражающие изменения в обмене дофамина в структурах МТ в процессе формирования стресс-реакции, пищевого, материнского, агрессивно-оборонительного и девиантного поведения.

Об авторах

А В Ахмадеев

Башкирский государственный университет

Башкирский государственный университет

Л Б Калимуллина

Башкирский государственный университет

Башкирский государственный университет

A V Akhmadeyev

L B Kalimullina

Список литературы

  1. Акмаев И.Г. и Калимуллина Л.Б. Миндалевидный комплекс мозга: функциональная морфология и нейроэндокринология. М., Наука, 1993.
  2. Ахмадеев А.В. Асимметрия миндалевидного комплекса и риск развития наркомании. Современные наукоемкие технологии, 2009, № 2, с. 20-24.
  3. Ахмадеев А.В. и Калимуллина Л.Б. Половые стероиды и норадреналин в системе нейроэндокринной регуляции функций миндалевидного тела мозга. Морфология, 2010, т. 138, вып. 5, с. 73-77.
  4. Ашмарин И.П. Нейрохимия. М., Изд-во Ин-та биомедицинской хим. РАМН, 1996.
  5. Калимуллина Л.Б., Ахмадеев А.В., Минибаева З.Р. и др. Ростро-каудальный градиент в структурно-функциональной организации миндалевидного тела мозга. Морфология, 2004, т. 125, вып. 1, с. 7-11.
  6. Носенко Н.Д. Нейроэндокринные эффекты неонатального воздействия ингибитора катехол-О-метилтрансферазы и половых стероидов. Пробл. эндокринол., 1989, т. 35, № 5, с. 64-68.
  7. Резников А.Г. Половые гормоны и дифференциация мозга. Киев, Наук. думка, 1982.
  8. Резников А.Г., Акмаев И.Г., Фиделина О.В. и др. Метаболизм тестостерона в дискретных областях мозга плодов крыс. Пробл. эндокринол., 1990, т. 36, № 3, с. 57-61.
  9. Резников А.Г., Пишак В.П., Носенко Н.Д. и др. Пренатальный стресс и нейроэндокринная патология. Черновцы, Медакадемия, 2004.
  10. Сергеев П.В., Шимановский В.И. и Петров В.И. Рецепторы физиологически активных веществ М., Наука, 1999.
  11. Угрюмов М.В. Механизмы нейроэндокринной регуляции. М., Наука, 1999.
  12. Шабанов П.Д. Структура и функции рецепторов дофамина. Обзоры по клинической фармакологии и лекарственной терапии, 2002, т. 1, № 1, с. 2-92.
  13. Шаляпина В.Г. Основы нейроэндокринологии. СПб., Элби, 2005.
  14. Anden N., Dahlstrbm A. and Fuxe K. Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol. Scand., 1966, v. 67, № 1, p. 313-326.
  15. Asan E., Yilmazer-Hanke D., Eliava M. et al. The corticotropinreleasing factor (CRF)-system and monoaminergic afferents in the central amygdala: investigations in different mouse strains and comparison with the rat. Neuroscince, 2005, v. 131, № 4, p. 953-967.
  16. Baldo B., Daniel R., Berridge C. and Kelley A. Overlapping distributions of orexin/hypocretin- and dopamine-beta-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. J. Comp. Neurol., 2003, v. 464, № 2, p. 220-237.
  17. Barry J. Extra-hypophysical immunoreactive LH-RH pathways in primates Neuroendocrine regulatory mechanisms: Intern. symp. Belgrade, 1978, v. 6, № 2, p. 13-24.
  18. Bloom E., Noble P., Sheridan К. et al. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA, 1990, v. 263, p. 2055-2060.
  19. Brummelte S. and Teuchrt-Noodt S. Postnatal development of dopamine innervation in the amygdala and the entorhinal cortex of the gerbil. Brain Res., 2006, v. 1125, № 1, p. 9-16.
  20. Creutz L. and Kritzer M. Mesostriatal and mesolimbic projections of midbrain neurons immunoreactive for estrogen receptor beta or androgen receptors in rats. J. Сomp. Neurol., 2004, v. 476, № 4, p.348-362.
  21. Dluzen D., Park J. and Kim K. Modulation of olfactory bulb tyrosine hydroxylase and catecholamine transporter mRNA by estrogen. Brain Res. Mol. Brain Res., 2002, v. 108, № 1-2, p. 121-128.
  22. Dominguez J. and Hull E. Stimulation of the medial amygdala enhances medial preoptic dopamine release: implications for male rat sexual behavior. Brain Res., 2001, v. 917, № 2, p. 225-229.
  23. Dominguez J., Riolo J. and Hull E. Regulation by the medial amygdala of copulation and medial preoptic dopamine release. J. Neusci., 2001, v. 21, № 1, p. 349-355.
  24. Dong X. and Xie J. Regulation of estrogen and phytoestrogen on the dopaminergic systems of amygdala in rats. Sheng Li Xue Bao, 2003, v. 55, № 5, p. 589-593.
  25. Flerco В., Setalo G. and Vigh S. The luteinizing hormone-releasing hormone (LH-RH) neuron system in the rat and rabbit. Neural hormones and reproduction. In: Brain endocrine interaction. Basel, Karger, 1978, Pt. 3, p. 108-116.
  26. Flugge G. and van Kampen M., Mijnster M. Perturbations in brain monoamine systems during stress. Cell Tissue Res., 2004, v. 315, p. 1-14.
  27. Giuliano F. and Allard J. Dopamine and male sexual function. Eur. Urol., 2001, v. 40, № 6, p. 601-608.
  28. Gobrogge K., Liu Y., Jia X. and Wang Z. Anterior hypothalamic neural activation and neurochemical associations with aggression in pair-bonded male prairie voles. J. Comp. Neurol., 2007, v. 502, № 6, p. 1109-1122.
  29. Heaton J. Central neuropharmacological agents and mechanisms in erectile dysfunction: the role of dopamine. Neurosci. Biobehav. Rev., 2000, v. 24, № 5, p. 561-569.
  30. Hull E. and Dominguez J. Getting his act together: roles of glutamate, nitric oxide, and dopamine in the medial preoptic area. Brain Res., 2006, v. 45, № 23, p. 345-356.
  31. Izvol'skaja M., Adamskaja E., Voronova S. et al. Catecholamines in regulation of development of GnRH neurons of rat fetuses. Ontogenez, 2005, v. 36, № 6, p. 440-448.
  32. Jennes L. Gonadotropin-releasing hormone receptors in the rat brain. Gen. Соmр. Endocrinol., 1989, v. 74, № 2, p. 288-289.
  33. Jeong Y., Lee N., Chung S. et al. Morphological characteristics of dopaminergic immunoreactive neurons in the olfactory bulb of the common marmoset monkey (Callithrix jacchus). Ann. Anat., 2003, v. 185, № 6, p. 543-547.
  34. Kalia M. Neurobiological basis of depression: an update. Metabolism, 2005, v. 54 (5 Suppl.1), p. 24-27
  35. Karolewicz B., Klimek V., Zhu H. et al. Effects of depression, cigaratte smoking, and age on monoamine oxidase B in amygdaloid nuclei. Brain Res., 2005, v. 1043, № 1-2, p. 57-64.
  36. Klimek V., Schenck J., Han H. et al. Dopaminergic abnormalities in amygdaloid nuclei in major depression: a postmortem study. Biol. Psychiatry, 2002, v. 52, № 7, p. 740-748.
  37. Liu B. and Xie J. Differential role of estrogen in dopamine metabolism in the amygdala and striatum of female rats. Sheng Li Xue Bao, 2002, v. 54, № 2, p. 121-124.
  38. Mansky T., Mestres Ventura P. and Wuttke W. Involvement of GABA in the feedback action of estradiol on gonadotropin and prolactin release: hypothalamic GABA and catecholamine turnover rates. Brain Res., 1982, v. 231, № 2, p.352-364.
  39. Marshall J.F., Odell S.J., Navarrete R. and Rosenstein A.J. Dopamine high-affinity transport site topography in rat brain: major differences between dorsal and ventral striatum. Neuroscience, 1990, v. 37, № 1, p. 11-21.
  40. Mitsushima D., Yamada K., Takase K. et al. Sex differences in the basolateral amygdala: the extracellular levels of serotonin and dopamine, and their responses to restraint stress in rats. Eur. J. Neurosci., 2006, v. 24, № 11, p. 3245-54.
  41. Northcutt K., Wang Z. and Lunstein J. Sex and species differences in tyrosine hydroxylase-synthesizing cells of the rodent olfactory extended amygdala. J. Comp. Neurol., 2007, v. 500, № 1, p. 103-115.
  42. Olazabal D., Aberrerumbie K, Rosenblatt J. and Morrell J. The content of dopamine, serotonin, and their metabolites in the neural circuit that mediates maternal behavior in juvenile and adult rats. Brain Res. Bull., 2004, v. 63, № 4, p. 259-68.
  43. Phillips A., Ahn S. and Howland J. Amygdalar control of the mesocorticolimbic dopamine system: parallel pathways to motivated behavior. Neurosci. Biobehav. Rev., 2003, v. 27, № 6. p. 543-554.
  44. Reichlin S. Neuroendocrinology. In: Textbook of endocrinology. Philadelphia, Saunders, 1985, p. 492-567.
  45. Reubi J., Palacios J. and Maurer R. Specific luteinizing-releasing hormone receptor binding sites in hippocampus and pituitary: an autoradiographical study. Neuroscience, 1987, v. 1, p. 847-856.
  46. Sawyer Ch.H. Functions of the amygdala related to the feedback actions of gonadal steroid hormones. In the neurobiology of the amygdale. N.Y., Plenum press, 1972, p. 745-762.
  47. Stalnaker T. and Berridge C. AMPA receptor stimulation within the central nucleus of the amygdala elicits a differential activation of central dopaminergic systems. Neuropsychopharmacology, 2003, v. 28, № 11, p. 1923-1934.
  48. Tarter R.E. Genetics and primary prevention of drug and alcogol abuse. Int. J. Addict., Dis., 1995, v. 30, p. 1479-1484.
  49. Triemstra J., Nagatani S. and Wood R. Chemosensory cues are essential for mating-induced dopamine release in MPOA of male Syrian hamsters Neuropsychopharmacology, 2005, v. 30, № 8, p. 1436-1442.
  50. Weiner R., Findell P. and Kordon C. Role of classic and peptide neuromediators in the neuendocrine regulation of LH and prolactin. In the physiology of reproduction. N.Y., Raven press, 1988. p. 1235-1281
  51. 51. Weise B., Zhang S., Zhou L. Antisenses strategies in dopamine recepror pharmacology. Life Sci., 1997, v. 60, № 7, p. 433-455.
  52. Wray S. Evidence that cells of the gonadotrophin releasing hormone system are derived from progenitor cells in the olfactory placode. In control of the onset of puberty. Part III. N.Y., Elsevier, 1989. p. 23-35.
  53. Yokoyama M., Suzuki E., Sato T. et al. Amygdalic levels of dopamine and serotonin rise upon exposure to conditioned fear stress without elevation of glutamate. Neurosci. Lett., 2005, v. 379, №1, p.37-41.
  54. Young A. and Rees K. Dopamine release in the amygdaloid complex of the rat, studied by brain microdialysis. Neurosci. Lett., 1998, v. 249, № 1, p. 49-52.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2010



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах