局部电子照射和注射抗坏血酸后血管小管和肾小球细胞增殖和凋亡的特点

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

论证。放射线照射是治疗恶性肿瘤的方法之一,由于血管肾小球和肾单位小管上皮的高放射性敏感性,因此存在发生放射性肾病的风险。研究肾小球血管内皮和肾细胞的增殖和凋亡是了解辐射损伤机制和制定预防方法的关键。

本研究旨在评估放射性肾病模型在辐射前注射抗坏血酸期间肾小球血管内皮和肾细胞的增殖和凋亡情况。

材料和方法。将 Wistar 大鼠(n=90)分为几组: I组对照组(n=15);II组:放射,单灶剂量(single fraction dose, SFD)2 Gy(n=15);III组:放射,SFD 8 Gy(n=15);IV组:放射,SFD 2 Gy + 抗坏血酸,腹腔注射,剂量50 mg/kg(n=15);V组: 第五组:放射射,SFD 8 Gy + 腹腔注射抗坏血酸,剂量 50 mg/kg(n=15);第六组:腹腔注射抗坏血酸,剂量 50 mg/kg(n=15)。样本用血红素和伊红染色,并对 Ki-67- 和 caspase-3 阳性细胞的数量进行免疫组化评估。

结果。在组织学研究中,在2 Gy和8 Gy SFD局部电子放射诱导的急性放射性肾病模型中,放射前服用抗坏血酸后,肾脏结构的病理形态学变化不太明显。在免疫组化研究中,观察到2 Gy和8 Gy SFD组血管肾小球、肾小管近端和远端上皮细胞中的 Ki-67- 和 caspase-3 阳性细胞减少(p >0.05)。相反,在放射前服用抗坏血酸的实验组中,细胞凋亡强度显著降低,Ki-67阳性细胞数量接近对照组(p>0.05)。

结论。放射前服用抗坏血酸可减轻辐射对肾脏结构造成的损害,以及电子对血管肾小球血管细胞和肾小管上皮细胞增殖和凋亡的影响,提高抗氧化防御的有效性。

全文:

受限制的访问

作者简介

Grigory A. Demyashkin

The First Sechenov Moscow State Medical University (Sechenov University); National Medical Research Radiological Center

编辑信件的主要联系方式.
Email: dr.dga@mail.ru
ORCID iD: 0000-0001-8447-2600
SPIN 代码: 5157-0177

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Moscow; Moscow

Zhanna E. Uruskhanova

The First Sechenov Moscow State Medical University (Sechenov University)

Email: jey.149@yandex.ru
ORCID iD: 0009-0009-2291-3680
俄罗斯联邦, Moscow

Sergey N. Koryakin

National Medical Research Radiological Center

Email: korsernic@mail.ru
ORCID iD: 0000-0003-0128-4538
SPIN 代码: 8153-5789

Cand. Sci. (Biology)

俄罗斯联邦, Moscow

Mikhail A. Parshenkov

The First Sechenov Moscow State Medical University (Sechenov University)

Email: misjakj@gmail.com
ORCID iD: 0009-0004-7170-8783
俄罗斯联邦, Moscow

Tatiana K. Dubovaya

The Russian National Research Medical University named after N.I. Pirogov

Email: gusvbr@mail.ru
ORCID iD: 0000-0001-7936-180X
SPIN 代码: 4254-6082

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Moscow

Galina M. Rodionova

The First Sechenov Moscow State Medical University (Sechenov University)

Email: rodionovagalinam@mail.ru
ORCID iD: 0000-0002-0536-9590
SPIN 代码: 5657-9984

Cand. Sci. (Pharmacy), Assistant Professor

俄罗斯联邦, Moscow

Vladimir I. Shchekin

The First Sechenov Moscow State Medical University (Sechenov University)

Email: dr.shchekin@mail.ru
ORCID iD: 0000-0003-3763-7454
SPIN 代码: 3664-8044
俄罗斯联邦, Moscow

Yuliya V. Ivchenko

The First Sechenov Moscow State Medical University (Sechenov University)

Email: ivchenko_yu_v@student.sechenov.ru
ORCID iD: 0000-0003-1336-7277
俄罗斯联邦, Moscow

Olga V. Ionova

The First Sechenov Moscow State Medical University (Sechenov University)

Email: olgaionova99@mail.ru
ORCID iD: 0009-0007-9137-6597
俄罗斯联邦, Moscow

参考

  1. Pinto R, Ardoino L, Villani P, Marino C. In vivo studies on radiofrequency (100 kHz-300 GHz) electromagnetic field exposure and cancer: A systematic review. Int J Environ Res Public Health. 2023;20(3):2071. EDN: UWBDFH doi: 10.3390/ijerph20032071
  2. Wild CP, Espina C, Bauld L, et al. Cancer prevention Europe. Mol Oncol. 2019;13(3):528–534. doi: 10.1002/1878-0261.12455
  3. Wei J, Wang B, Wang H, et al. Radiation-induced normal tissue damage: Oxidative stress and epigenetic mechanisms. Oxid Med Cell Longev. 2019;2019:3010342. EDN: CJOKXL doi: 10.1155/2019/3010342
  4. Le VH, Kha QH, Minh TN, et al. Development and validation of CT-based radiomics signature for overall survival prediction in multi-organ cancer. J Digit Imaging. 2023;36(3):911–922. EDN: CUARJO doi: 10.1007/s10278-023-00778-0
  5. Dawson L, Kavanagh B, Paulino A, et al. Radiation-associated kidney injury. Int J Radiation Oncol Biol Physics. 2010;76(3):108–115. doi: 10.1016/j.ijrobp.2009.02.089
  6. Aratani S, Tagawa M, Nagasaka S, et al. Radiation-induced premature cellular senescence involved in glomerular diseases in rats. Sci Rep. 2018;8(1):16812. doi: 10.1038/s41598-018-34893-8
  7. Scholz M, Kraft-Weyrather W, Ritter S, Kraft G. Cell cycle delays induced by heavy ion irradiation of synchronous mammalian cells. Int J Radiation Biol. 1994;66(1):59–75. EDN: XYSSVT doi: 10.1080/09553009414550951
  8. Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing radiation and complex DNA damage: From prediction to detection challenges and biological significance. Cancers (Basel). 2019;11(11):1789. EDN: GIFYCB doi: 10.3390/cancers11111789
  9. Carante MP, Ballarini F. Radiation damage in biomolecules and cells. Int J Mol Sci. 2020;21(21):8188. EDN: CXOOGB doi: 10.3390/ijms21218188
  10. Sia J, Szmyd R, Hau E, Gee HE. Molecular mechanisms of radiation-induced cancer cell death: A primer. Front Cell Developmental Biol. 2020;(8):41. EDN: IHCCVI doi: 10.3389/fcell.2020.00041
  11. Ashrafizadeh M, Farhood B, Eleojo Musa A, et al. Damage-associated molecular patterns in tumor radiotherapy. Int Immunopharmacol. 2020;(86):106761. EDN: UNXGZM doi: 10.1016/j.intimp.2020.106761
  12. Nano M, Mondo JA, Harwood J, et al. Cell survival following direct executioner-caspase activation. Proc Natl Acad Sci USA. 2023;120(4): e2216531120. EDN: QFKEAX doi: 10.1073/pnas.2216531120
  13. Demyashkin GA, Koryakin SN, Stepanova YY, et al. Morphological characteristics of kidneys in rats after targeted irradiation with electrons in a dose of 2, 4 and 6 Gy. Veterinarny vrach. 2021;(5)9–16. EDN: YIAPCK doi: 10.33632/1998-698Х.2021-5-9-16
  14. Bunyatyan ND, Vasiliev AN, Verstakova OL, et al. Manual on conducting preclinical studies of medicines. Part I. Mironov AN, editor.Moscow: Grif i K; 2012. 944 р. (In Russ.).
  15. Yumusak N, Sadic M, Yucel G, et al. Apoptosis and cell proliferation in short-term and long-term effects of radioiodine-131-induced kidney damage: An experimental and immunohistochemical study. Nucl Med Commun. 2018;39(2):131–139. EDN: YFTKAP doi: 10.1097/MNM.0000000000000788
  16. Kolina IB, Bobkova IN. Renal damage with malignant neoplasms. Clinician. 2014;(2):7–16. EDN: TIINVP
  17. Zhao W, Zhuang P, Chen Y, et al. “Double-edged sword” effect of reactive oxygen species (ROS) in tumor development and carcinogenesis. Physiol Res. 2023;72(3):301–307. EDN: XLCYPX doi: 10.33549/physiolres.935007
  18. McRobb LS, McKay MJ, Gamble JR, et al. Ionizing radiation reduces ADAM10 expression in brain microvascular endothelial cells undergoing stress-induced senescence. Aging (Albany NY). 2017;9(4):1248–1268. EDN: YEVGSZ doi: 10.18632/aging.101225
  19. Fujino S, Sun J, Nakayama S, et al. A combination of iohexol treatment and ionizing radiation exposure enhances kidney injury in contrast-induced nephropathy by increasing DNA damage. Radiat Res. 2022;197(4):384–395. EDN: YNXLII doi: 10.1667/RADE-21-00178.1
  20. Finkelman BS, Zhang H, Hicks DG, Turner BM. The evolution of Ki-67 and breast carcinoma: Past observations, present directions, and future considerations. Cancers (Basel). 2023;15(3):808. EDN: RKJHIR doi: 10.3390/cancers15030808
  21. Chrabańska M, Rynkiewicz M, Kiczmer P, Drozdzowska B. Immunohistochemical expression of CD44, MMP-2, MMP-9, and Ki-67 as the prognostic markers in non-clear cell renal cell carcinomas: A prospective cohort study. J Clin Med. 2022;11(17):5196. EDN: YDLFYK doi: 10.3390/jcm11175196
  22. Li Z, Li F, Pan C, et al. Tumor cell proliferation (Ki-67) expression and its prognostic significance in histological subtypes of lung adenocarcinoma. Lung Cancer. 2021;(154):69–75. EDN: CIWVOU doi: 10.1016/j.lungcan.2021.02.009
  23. Kim DH, Park JS, Choi HI, et al. The critical role of FXR is associated with the regulation of autophagy and apoptosis in the progression of AKI to CKD. Cell Death Disease. 2021;12(4):320. EDN: MEBYNA doi: 10.1038/s41419-021-03620-z
  24. Li G, Wang S, Fan Z. Oxidative stress in intestinal ischemia-reperfusion. Front Med (Lausanne). 2022;(8):750731. EDN: TCFEIW doi: 10.3389/fmed.2021.750731
  25. Wang Q, Zhou Y, Wang X, Evers BM. Glycogen synthase kinase-3 is a negative regulator of extracellular signal-regulated kinase. Oncogene. 2006;25(1):43–50. doi: 10.1038/sj.onc.1209004
  26. Okunieff P, Suit HD. Toxicity, radiation sensitivity modification, and combined drug effects of ascorbic acid with misonidazole in vivo on FSaII murine fibrosarcomas. J Natl Cancer Inst. 1987;79(2):377–381. doi: 10.1093/JNCI/79.2.377
  27. González E, Cruces MP, Pimentel E, Sánchez P. Evidence that the radioprotector effect of ascorbic acid depends on the radiation dose rate. Environ Toxicol Pharmacol. 2018;62:210–214. doi: 10.1016/j.etap.2018.07.015
  28. Jagetia GC, Rajanikant GK, Rao SK, Baliga MS. Alteration in the glutathione, glutathione peroxidase, superoxide dismutase and lipid peroxidation by ascorbic acid in the skin of mice exposed to fractionated gamma radiation. Clin Chim Acta. 2003;332(1–2):111–121. doi: 10.1016/S0009-8981(03)00132-3
  29. Mikirova N, Ichim TE, Riordan NH. Anti-angiogenic effect of high doses of ascorbic acid. J Transl Med. 2008;6:50. doi: 10.1186/1479-5876-6-50
  30. Morel C, Carlson SM, White FM, Davis RJ. Mcl-1 integrates the opposing actions of signaling pathways that mediate survival and apoptosis. Mol Cell Biol. 2009;29(14):3845–3852. doi: 10.1128/MCB.00279-09
  31. Allum AJ, Mussallem JT, Froning CE, et al. Ascorbic acid 2-glucoside pretreatment protects cells from ionizing radiation, UVC, and short wavelength of UVB. Genes (Basel). 2020;11(3):238. doi: 10.3390/genes11030238
  32. Petruk G, del Giudice R, Rigano MM, Monti DM. Antioxidants from plants protect against skin photoaging. Oxidat Med Cell Longev. 2018;2018:1454936. EDN: VJFAYU doi: 10.1155/2018/1454936
  33. El-Sonbaty SM, Moawed FS, Elbakry MM. Amphora algae with low-level ionizing radiation exposure ameliorate D-galactosamine-induced inflammatory impairment in rat kidney. Environ Toxicol. 2021;36(4):451–459. EDN: RANHHY doi: 10.1002/tox.23050

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Kidneys Wistar lab rats of control and experimental groups. Hematoxylin and eosin staining, ×200.

下载 (5MB)
3. Fig. 2. Kidneys Wistar lab rats of control and experimental groups. Immunohistochemical study with antibodies to Ki-67, staining with haematoxylin; ×400.

下载 (4MB)
4. Fig. 3. Kidneys Wistar lab rats of control and experimental groups. Groups are numbered according to the study design. * Comparison with control group (p <0.05). ** Comparison of group IV with group II (Single local dose 2 Gy + ascorbic acid and Single local dose 2 Gy; p <0.01). *** Comparison of group V with group III (Single local dose 8 Gy + ascorbic acid and Single local dose 8 Gy; p <0.01). Proportion of Ki-67-positive cells: a ― in the renal calf; b ― in proximal and distal tubules of nephrons; c ― in the tubules of the loop of Henle and collecting tubules.

下载 (519KB)
5. Fig. 4. Kidneys Wistar lab rats of control and experimental groups. Immunohistochemical study with antibodies to caspase-3, staining with haematoxylin; ×400.

下载 (4MB)
6. Fig. 5. Kidneys Wistar lab rats of control and experimental groups. Groups are numbered according to the study design. * Comparison with control group (p <0.05). ** Comparison of group IV with group II (Single local dose 2 Gy + ascorbic acid and Single local dose 2 Gy; p <0.01). *** Comparison of group V with group III (Single local dose 8 Gy + ascorbic acid and Single local dose 8 Gy; p <0.01). Proportion of caspase-3-positive cells: a ― in the renal calf; b ― in proximal and distal tubules of nephrons; c ― in the tubules of the loop of Henle and collecting tubules (p <0.001).

下载 (491KB)

版权所有 © Eco-Vector, 2024



Периодический печатный журнал зарегистрирован как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): 0110212 от 08.02.1993.
Сетевое издание зарегистрировано как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): ЭЛ № ФС 77 - 84733 от 10.02.2023.