Renal proliferation and apoptosis against ascorbic acid administration in a model of acute radiation nephropathy

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Radiation exposure, an integral part of the treatment of malignant neoplasms, is associated with a risk of radiation nephropathy because of the high radiosensitivity of the kidneys. The analysis of renal tissue proliferation and apoptosis is important to understand the mechanisms of radiation damage and develop treatment strategies.

AIM: To evaluate endothelial proliferation and apoptosis of vascular tubules and nephrocytes during preradiation administration of ascorbic acid in a model of radiation nephropathy.

MATERIALS AND METHODS: Wistar rats (n=90) were divided into groups: I, control (n=15); II, irradiation, 2 Gy dose (n=15); III, irradiation, 8 Gy dose (n=15); IV, irradiation, 2 Gy dose + ascorbic acid, intraperitoneal injection at 50 mg/kg (n=15); V, irradiation, 8 Gy dose + ascorbic acid, intraperitoneal injection at 50 mg/kg (n=15); VI, ascorbic acid, intraperitoneal injection at 50 mg/kg (n=15). Kidney slides were stained with hematoxylin and eosin. In addition, immunohistochemical evaluation of the expression levels of Ki-67- and Cas-3-positive cells was performed.

RESULTS: The histological study showed that preradiation administration of ascorbic acid (intraperitoneal injection of 50 mg/kg) in the acute radiation nephropathy model induced by local irradiation with electrons at 2 and 8 Gy contributed to the statistical reduction of pathomorphologic changes. According to the results of immunohistochemical evaluation of proliferation and apoptosis, distribution of Ki-67- and Cas-3-positive cells in the tubules, epitheliocytes of proximal and distal tubules of nephrons in mono-irradiation groups revealed the activation of the terminal stage of cell death, which correlated with the electron irradiation dose. Moreover, in the experimental groups with preirradiation administration of ascorbic acid, a significant decrease in the intensity of apoptosis was recorded.

CONCLUSION: Preradiation administration of ascorbic acid reduces the strength of radiation-induced kidney damage and the effect of electron irradiation on the life cycle of tubular cells and epitheliocytes of nephron tubules while increasing the effectiveness of the antioxidant defense.

Full Text

Restricted Access

About the authors

Grigory A. Demyashkin

The First Sechenov Moscow State Medical University (Sechenov University); National Medical Research Radiological Center

Author for correspondence.
Email: dr.dga@mail.ru
ORCID iD: 0000-0001-8447-2600
SPIN-code: 5157-0177

MD, Dr. Sci. (Medicine)

Russian Federation, Moscow; Moscow

Zhanna E. Uruskhanova

The First Sechenov Moscow State Medical University (Sechenov University)

Email: jey.149@yandex.ru
ORCID iD: 0009-0009-2291-3680
Russian Federation, Moscow

Sergey N. Koryakin

National Medical Research Radiological Center

Email: korsernic@mail.ru
ORCID iD: 0000-0003-0128-4538
SPIN-code: 8153-5789

Cand. Sci. (Biology)

 
Russian Federation, Moscow

Mikhail A. Parshenkov

The First Sechenov Moscow State Medical University (Sechenov University)

Email: misjakj@gmail.com
ORCID iD: 0009-0004-7170-8783
Russian Federation, Moscow

Tatiana K. Dubovaya

The Russian National Research Medical University named after N.I. Pirogov

Email: gusvbr@mail.ru
ORCID iD: 0000-0001-7936-180X
SPIN-code: 4254-6082

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Galina M. Rodionova

The First Sechenov Moscow State Medical University (Sechenov University)

Email: rodionovagalinam@mail.ru
ORCID iD: 0000-0002-0536-9590
SPIN-code: 5657-9984

Cand. Sci. (Pharmacy), Assistant Professor

Russian Federation, Moscow

Vladimir I. Shchekin

The First Sechenov Moscow State Medical University (Sechenov University)

Email: dr.shchekin@mail.ru
ORCID iD: 0000-0003-3763-7454
SPIN-code: 3664-8044
Russian Federation, Moscow

Yuliya V. Ivchenko

The First Sechenov Moscow State Medical University (Sechenov University)

Email: ivchenko_yu_v@student.sechenov.ru
ORCID iD: 0000-0003-1336-7277
Russian Federation, Moscow

Olga V. Ionova

The First Sechenov Moscow State Medical University (Sechenov University)

Email: olgaionova99@mail.ru
ORCID iD: 0009-0007-9137-6597
Russian Federation, Moscow

References

  1. Pinto R, Ardoino L, Villani P, Marino C. In vivo studies on radiofrequency (100 kHz-300 GHz) electromagnetic field exposure and cancer: A systematic review. Int J Environ Res Public Health. 2023;20(3):2071. EDN: UWBDFH doi: 10.3390/ijerph20032071
  2. Wild CP, Espina C, Bauld L, et al. Cancer prevention Europe. Mol Oncol. 2019;13(3):528–534. doi: 10.1002/1878-0261.12455
  3. Wei J, Wang B, Wang H, et al. Radiation-induced normal tissue damage: Oxidative stress and epigenetic mechanisms. Oxid Med Cell Longev. 2019;2019:3010342. EDN: CJOKXL doi: 10.1155/2019/3010342
  4. Le VH, Kha QH, Minh TN, et al. Development and validation of CT-based radiomics signature for overall survival prediction in multi-organ cancer. J Digit Imaging. 2023;36(3):911–922. EDN: CUARJO doi: 10.1007/s10278-023-00778-0
  5. Dawson L, Kavanagh B, Paulino A, et al. Radiation-associated kidney injury. Int J Radiation Oncol Biol Physics. 2010;76(3):108–115. doi: 10.1016/j.ijrobp.2009.02.089
  6. Aratani S, Tagawa M, Nagasaka S, et al. Radiation-induced premature cellular senescence involved in glomerular diseases in rats. Sci Rep. 2018;8(1):16812. doi: 10.1038/s41598-018-34893-8
  7. Scholz M, Kraft-Weyrather W, Ritter S, Kraft G. Cell cycle delays induced by heavy ion irradiation of synchronous mammalian cells. Int J Radiation Biol. 1994;66(1):59–75. EDN: XYSSVT doi: 10.1080/09553009414550951
  8. Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing radiation and complex DNA damage: From prediction to detection challenges and biological significance. Cancers (Basel). 2019;11(11):1789. EDN: GIFYCB doi: 10.3390/cancers11111789
  9. Carante MP, Ballarini F. Radiation damage in biomolecules and cells. Int J Mol Sci. 2020;21(21):8188. EDN: CXOOGB doi: 10.3390/ijms21218188
  10. Sia J, Szmyd R, Hau E, Gee HE. Molecular mechanisms of radiation-induced cancer cell death: A primer. Front Cell Developmental Biol. 2020;(8):41. EDN: IHCCVI doi: 10.3389/fcell.2020.00041
  11. Ashrafizadeh M, Farhood B, Eleojo Musa A, et al. Damage-associated molecular patterns in tumor radiotherapy. Int Immunopharmacol. 2020;(86):106761. EDN: UNXGZM doi: 10.1016/j.intimp.2020.106761
  12. Nano M, Mondo JA, Harwood J, et al. Cell survival following direct executioner-caspase activation. Proc Natl Acad Sci USA. 2023;120(4): e2216531120. EDN: QFKEAX doi: 10.1073/pnas.2216531120
  13. Demyashkin GA, Koryakin SN, Stepanova YY, et al. Morphological characteristics of kidneys in rats after targeted irradiation with electrons in a dose of 2, 4 and 6 Gy. Veterinarny vrach. 2021;(5)9–16. EDN: YIAPCK doi: 10.33632/1998-698Х.2021-5-9-16
  14. Bunyatyan ND, Vasiliev AN, Verstakova OL, et al. Manual on conducting preclinical studies of medicines. Part I. Mironov AN, editor.Moscow: Grif i K; 2012. 944 р. (In Russ.).
  15. Yumusak N, Sadic M, Yucel G, et al. Apoptosis and cell proliferation in short-term and long-term effects of radioiodine-131-induced kidney damage: An experimental and immunohistochemical study. Nucl Med Commun. 2018;39(2):131–139. EDN: YFTKAP doi: 10.1097/MNM.0000000000000788
  16. Kolina IB, Bobkova IN. Renal damage with malignant neoplasms. Clinician. 2014;(2):7–16. EDN: TIINVP
  17. Zhao W, Zhuang P, Chen Y, et al. “Double-edged sword” effect of reactive oxygen species (ROS) in tumor development and carcinogenesis. Physiol Res. 2023;72(3):301–307. EDN: XLCYPX doi: 10.33549/physiolres.935007
  18. McRobb LS, McKay MJ, Gamble JR, et al. Ionizing radiation reduces ADAM10 expression in brain microvascular endothelial cells undergoing stress-induced senescence. Aging (Albany NY). 2017;9(4):1248–1268. EDN: YEVGSZ doi: 10.18632/aging.101225
  19. Fujino S, Sun J, Nakayama S, et al. A combination of iohexol treatment and ionizing radiation exposure enhances kidney injury in contrast-induced nephropathy by increasing DNA damage. Radiat Res. 2022;197(4):384–395. EDN: YNXLII doi: 10.1667/RADE-21-00178.1
  20. Finkelman BS, Zhang H, Hicks DG, Turner BM. The evolution of Ki-67 and breast carcinoma: Past observations, present directions, and future considerations. Cancers (Basel). 2023;15(3):808. EDN: RKJHIR doi: 10.3390/cancers15030808
  21. Chrabańska M, Rynkiewicz M, Kiczmer P, Drozdzowska B. Immunohistochemical expression of CD44, MMP-2, MMP-9, and Ki-67 as the prognostic markers in non-clear cell renal cell carcinomas: A prospective cohort study. J Clin Med. 2022;11(17):5196. EDN: YDLFYK doi: 10.3390/jcm11175196
  22. Li Z, Li F, Pan C, et al. Tumor cell proliferation (Ki-67) expression and its prognostic significance in histological subtypes of lung adenocarcinoma. Lung Cancer. 2021;(154):69–75. EDN: CIWVOU doi: 10.1016/j.lungcan.2021.02.009
  23. Kim DH, Park JS, Choi HI, et al. The critical role of FXR is associated with the regulation of autophagy and apoptosis in the progression of AKI to CKD. Cell Death Disease. 2021;12(4):320. EDN: MEBYNA doi: 10.1038/s41419-021-03620-z
  24. Li G, Wang S, Fan Z. Oxidative stress in intestinal ischemia-reperfusion. Front Med (Lausanne). 2022;(8):750731. EDN: TCFEIW doi: 10.3389/fmed.2021.750731
  25. Wang Q, Zhou Y, Wang X, Evers BM. Glycogen synthase kinase-3 is a negative regulator of extracellular signal-regulated kinase. Oncogene. 2006;25(1):43–50. doi: 10.1038/sj.onc.1209004
  26. Okunieff P, Suit HD. Toxicity, radiation sensitivity modification, and combined drug effects of ascorbic acid with misonidazole in vivo on FSaII murine fibrosarcomas. J Natl Cancer Inst. 1987;79(2):377–381. doi: 10.1093/JNCI/79.2.377
  27. González E, Cruces MP, Pimentel E, Sánchez P. Evidence that the radioprotector effect of ascorbic acid depends on the radiation dose rate. Environ Toxicol Pharmacol. 2018;62:210–214. doi: 10.1016/j.etap.2018.07.015
  28. Jagetia GC, Rajanikant GK, Rao SK, Baliga MS. Alteration in the glutathione, glutathione peroxidase, superoxide dismutase and lipid peroxidation by ascorbic acid in the skin of mice exposed to fractionated gamma radiation. Clin Chim Acta. 2003;332(1–2):111–121. doi: 10.1016/S0009-8981(03)00132-3
  29. Mikirova N, Ichim TE, Riordan NH. Anti-angiogenic effect of high doses of ascorbic acid. J Transl Med. 2008;6:50. doi: 10.1186/1479-5876-6-50
  30. Morel C, Carlson SM, White FM, Davis RJ. Mcl-1 integrates the opposing actions of signaling pathways that mediate survival and apoptosis. Mol Cell Biol. 2009;29(14):3845–3852. doi: 10.1128/MCB.00279-09
  31. Allum AJ, Mussallem JT, Froning CE, et al. Ascorbic acid 2-glucoside pretreatment protects cells from ionizing radiation, UVC, and short wavelength of UVB. Genes (Basel). 2020;11(3):238. doi: 10.3390/genes11030238
  32. Petruk G, del Giudice R, Rigano MM, Monti DM. Antioxidants from plants protect against skin photoaging. Oxidat Med Cell Longev. 2018;2018:1454936. EDN: VJFAYU doi: 10.1155/2018/1454936
  33. El-Sonbaty SM, Moawed FS, Elbakry MM. Amphora algae with low-level ionizing radiation exposure ameliorate D-galactosamine-induced inflammatory impairment in rat kidney. Environ Toxicol. 2021;36(4):451–459. EDN: RANHHY doi: 10.1002/tox.23050

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Kidneys Wistar lab rats of control and experimental groups. Hematoxylin and eosin staining, ×200.

Download (5MB)
3. Fig. 2. Kidneys Wistar lab rats of control and experimental groups. Immunohistochemical study with antibodies to Ki-67, staining with haematoxylin; ×400.

Download (4MB)
4. Fig. 3. Kidneys Wistar lab rats of control and experimental groups. Groups are numbered according to the study design. * Comparison with control group (p <0.05). ** Comparison of group IV with group II (Single local dose 2 Gy + ascorbic acid and Single local dose 2 Gy; p <0.01). *** Comparison of group V with group III (Single local dose 8 Gy + ascorbic acid and Single local dose 8 Gy; p <0.01). Proportion of Ki-67-positive cells: a ― in the renal calf; b ― in proximal and distal tubules of nephrons; c ― in the tubules of the loop of Henle and collecting tubules.

Download (519KB)
5. Fig. 4. Kidneys Wistar lab rats of control and experimental groups. Immunohistochemical study with antibodies to caspase-3, staining with haematoxylin; ×400.

Download (4MB)
6. Fig. 5. Kidneys Wistar lab rats of control and experimental groups. Groups are numbered according to the study design. * Comparison with control group (p <0.05). ** Comparison of group IV with group II (Single local dose 2 Gy + ascorbic acid and Single local dose 2 Gy; p <0.01). *** Comparison of group V with group III (Single local dose 8 Gy + ascorbic acid and Single local dose 8 Gy; p <0.01). Proportion of caspase-3-positive cells: a ― in the renal calf; b ― in proximal and distal tubules of nephrons; c ― in the tubules of the loop of Henle and collecting tubules (p <0.001).

Download (491KB)

Copyright (c) 2024 Eco-Vector



Периодический печатный журнал зарегистрирован как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): 0110212 от 08.02.1993.
Сетевое издание зарегистрировано как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): ЭЛ № ФС 77 - 84733 от 10.02.2023.