Renal proliferation and apoptosis against ascorbic acid administration in a model of acute radiation nephropathy
- Authors: Demyashkin G.A.1,2, Uruskhanova Z.E.1, Koryakin S.N.2, Parshenkov M.A.1, Dubovaya T.K.3, Rodionova G.M.1, Shchekin V.I.1, Ivchenko Y.V.1, Ionova O.V.1
-
Affiliations:
- The First Sechenov Moscow State Medical University (Sechenov University)
- National Medical Research Radiological Center
- The Russian National Research Medical University named after N.I. Pirogov
- Issue: Vol 162, No 1 (2024)
- Pages: 16-30
- Section: Original Study Articles
- Submitted: 25.03.2024
- Accepted: 25.06.2024
- Published: 04.09.2024
- URL: https://j-morphology.com/1026-3543/article/view/629410
- DOI: https://doi.org/10.17816/morph.629410
- ID: 629410
Cite item
Abstract
BACKGROUND: Radiation exposure, an integral part of the treatment of malignant neoplasms, is associated with a risk of radiation nephropathy because of the high radiosensitivity of the kidneys. The analysis of renal tissue proliferation and apoptosis is important to understand the mechanisms of radiation damage and develop treatment strategies.
AIM: To evaluate endothelial proliferation and apoptosis of vascular tubules and nephrocytes during preradiation administration of ascorbic acid in a model of radiation nephropathy.
MATERIALS AND METHODS: Wistar rats (n=90) were divided into groups: I, control (n=15); II, irradiation, 2 Gy dose (n=15); III, irradiation, 8 Gy dose (n=15); IV, irradiation, 2 Gy dose + ascorbic acid, intraperitoneal injection at 50 mg/kg (n=15); V, irradiation, 8 Gy dose + ascorbic acid, intraperitoneal injection at 50 mg/kg (n=15); VI, ascorbic acid, intraperitoneal injection at 50 mg/kg (n=15). Kidney slides were stained with hematoxylin and eosin. In addition, immunohistochemical evaluation of the expression levels of Ki-67- and Cas-3-positive cells was performed.
RESULTS: The histological study showed that preradiation administration of ascorbic acid (intraperitoneal injection of 50 mg/kg) in the acute radiation nephropathy model induced by local irradiation with electrons at 2 and 8 Gy contributed to the statistical reduction of pathomorphologic changes. According to the results of immunohistochemical evaluation of proliferation and apoptosis, distribution of Ki-67- and Cas-3-positive cells in the tubules, epitheliocytes of proximal and distal tubules of nephrons in mono-irradiation groups revealed the activation of the terminal stage of cell death, which correlated with the electron irradiation dose. Moreover, in the experimental groups with preirradiation administration of ascorbic acid, a significant decrease in the intensity of apoptosis was recorded.
CONCLUSION: Preradiation administration of ascorbic acid reduces the strength of radiation-induced kidney damage and the effect of electron irradiation on the life cycle of tubular cells and epitheliocytes of nephron tubules while increasing the effectiveness of the antioxidant defense.
Full Text

About the authors
Grigory A. Demyashkin
The First Sechenov Moscow State Medical University (Sechenov University); National Medical Research Radiological Center
Author for correspondence.
Email: dr.dga@mail.ru
ORCID iD: 0000-0001-8447-2600
SPIN-code: 5157-0177
MD, Dr. Sci. (Medicine)
Russian Federation, Moscow; MoscowZhanna E. Uruskhanova
The First Sechenov Moscow State Medical University (Sechenov University)
Email: jey.149@yandex.ru
ORCID iD: 0009-0009-2291-3680
Russian Federation, Moscow
Sergey N. Koryakin
National Medical Research Radiological Center
Email: korsernic@mail.ru
ORCID iD: 0000-0003-0128-4538
SPIN-code: 8153-5789
Cand. Sci. (Biology)
Mikhail A. Parshenkov
The First Sechenov Moscow State Medical University (Sechenov University)
Email: misjakj@gmail.com
ORCID iD: 0009-0004-7170-8783
Russian Federation, Moscow
Tatiana K. Dubovaya
The Russian National Research Medical University named after N.I. Pirogov
Email: gusvbr@mail.ru
ORCID iD: 0000-0001-7936-180X
SPIN-code: 4254-6082
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowGalina M. Rodionova
The First Sechenov Moscow State Medical University (Sechenov University)
Email: rodionovagalinam@mail.ru
ORCID iD: 0000-0002-0536-9590
SPIN-code: 5657-9984
Cand. Sci. (Pharmacy), Assistant Professor
Russian Federation, MoscowVladimir I. Shchekin
The First Sechenov Moscow State Medical University (Sechenov University)
Email: dr.shchekin@mail.ru
ORCID iD: 0000-0003-3763-7454
SPIN-code: 3664-8044
Russian Federation, Moscow
Yuliya V. Ivchenko
The First Sechenov Moscow State Medical University (Sechenov University)
Email: ivchenko_yu_v@student.sechenov.ru
ORCID iD: 0000-0003-1336-7277
Russian Federation, Moscow
Olga V. Ionova
The First Sechenov Moscow State Medical University (Sechenov University)
Email: olgaionova99@mail.ru
ORCID iD: 0009-0007-9137-6597
Russian Federation, Moscow
References
- Pinto R, Ardoino L, Villani P, Marino C. In vivo studies on radiofrequency (100 kHz-300 GHz) electromagnetic field exposure and cancer: A systematic review. Int J Environ Res Public Health. 2023;20(3):2071. EDN: UWBDFH doi: 10.3390/ijerph20032071
- Wild CP, Espina C, Bauld L, et al. Cancer prevention Europe. Mol Oncol. 2019;13(3):528–534. doi: 10.1002/1878-0261.12455
- Wei J, Wang B, Wang H, et al. Radiation-induced normal tissue damage: Oxidative stress and epigenetic mechanisms. Oxid Med Cell Longev. 2019;2019:3010342. EDN: CJOKXL doi: 10.1155/2019/3010342
- Le VH, Kha QH, Minh TN, et al. Development and validation of CT-based radiomics signature for overall survival prediction in multi-organ cancer. J Digit Imaging. 2023;36(3):911–922. EDN: CUARJO doi: 10.1007/s10278-023-00778-0
- Dawson L, Kavanagh B, Paulino A, et al. Radiation-associated kidney injury. Int J Radiation Oncol Biol Physics. 2010;76(3):108–115. doi: 10.1016/j.ijrobp.2009.02.089
- Aratani S, Tagawa M, Nagasaka S, et al. Radiation-induced premature cellular senescence involved in glomerular diseases in rats. Sci Rep. 2018;8(1):16812. doi: 10.1038/s41598-018-34893-8
- Scholz M, Kraft-Weyrather W, Ritter S, Kraft G. Cell cycle delays induced by heavy ion irradiation of synchronous mammalian cells. Int J Radiation Biol. 1994;66(1):59–75. EDN: XYSSVT doi: 10.1080/09553009414550951
- Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing radiation and complex DNA damage: From prediction to detection challenges and biological significance. Cancers (Basel). 2019;11(11):1789. EDN: GIFYCB doi: 10.3390/cancers11111789
- Carante MP, Ballarini F. Radiation damage in biomolecules and cells. Int J Mol Sci. 2020;21(21):8188. EDN: CXOOGB doi: 10.3390/ijms21218188
- Sia J, Szmyd R, Hau E, Gee HE. Molecular mechanisms of radiation-induced cancer cell death: A primer. Front Cell Developmental Biol. 2020;(8):41. EDN: IHCCVI doi: 10.3389/fcell.2020.00041
- Ashrafizadeh M, Farhood B, Eleojo Musa A, et al. Damage-associated molecular patterns in tumor radiotherapy. Int Immunopharmacol. 2020;(86):106761. EDN: UNXGZM doi: 10.1016/j.intimp.2020.106761
- Nano M, Mondo JA, Harwood J, et al. Cell survival following direct executioner-caspase activation. Proc Natl Acad Sci USA. 2023;120(4): e2216531120. EDN: QFKEAX doi: 10.1073/pnas.2216531120
- Demyashkin GA, Koryakin SN, Stepanova YY, et al. Morphological characteristics of kidneys in rats after targeted irradiation with electrons in a dose of 2, 4 and 6 Gy. Veterinarny vrach. 2021;(5)9–16. EDN: YIAPCK doi: 10.33632/1998-698Х.2021-5-9-16
- Bunyatyan ND, Vasiliev AN, Verstakova OL, et al. Manual on conducting preclinical studies of medicines. Part I. Mironov AN, editor.Moscow: Grif i K; 2012. 944 р. (In Russ.).
- Yumusak N, Sadic M, Yucel G, et al. Apoptosis and cell proliferation in short-term and long-term effects of radioiodine-131-induced kidney damage: An experimental and immunohistochemical study. Nucl Med Commun. 2018;39(2):131–139. EDN: YFTKAP doi: 10.1097/MNM.0000000000000788
- Kolina IB, Bobkova IN. Renal damage with malignant neoplasms. Clinician. 2014;(2):7–16. EDN: TIINVP
- Zhao W, Zhuang P, Chen Y, et al. “Double-edged sword” effect of reactive oxygen species (ROS) in tumor development and carcinogenesis. Physiol Res. 2023;72(3):301–307. EDN: XLCYPX doi: 10.33549/physiolres.935007
- McRobb LS, McKay MJ, Gamble JR, et al. Ionizing radiation reduces ADAM10 expression in brain microvascular endothelial cells undergoing stress-induced senescence. Aging (Albany NY). 2017;9(4):1248–1268. EDN: YEVGSZ doi: 10.18632/aging.101225
- Fujino S, Sun J, Nakayama S, et al. A combination of iohexol treatment and ionizing radiation exposure enhances kidney injury in contrast-induced nephropathy by increasing DNA damage. Radiat Res. 2022;197(4):384–395. EDN: YNXLII doi: 10.1667/RADE-21-00178.1
- Finkelman BS, Zhang H, Hicks DG, Turner BM. The evolution of Ki-67 and breast carcinoma: Past observations, present directions, and future considerations. Cancers (Basel). 2023;15(3):808. EDN: RKJHIR doi: 10.3390/cancers15030808
- Chrabańska M, Rynkiewicz M, Kiczmer P, Drozdzowska B. Immunohistochemical expression of CD44, MMP-2, MMP-9, and Ki-67 as the prognostic markers in non-clear cell renal cell carcinomas: A prospective cohort study. J Clin Med. 2022;11(17):5196. EDN: YDLFYK doi: 10.3390/jcm11175196
- Li Z, Li F, Pan C, et al. Tumor cell proliferation (Ki-67) expression and its prognostic significance in histological subtypes of lung adenocarcinoma. Lung Cancer. 2021;(154):69–75. EDN: CIWVOU doi: 10.1016/j.lungcan.2021.02.009
- Kim DH, Park JS, Choi HI, et al. The critical role of FXR is associated with the regulation of autophagy and apoptosis in the progression of AKI to CKD. Cell Death Disease. 2021;12(4):320. EDN: MEBYNA doi: 10.1038/s41419-021-03620-z
- Li G, Wang S, Fan Z. Oxidative stress in intestinal ischemia-reperfusion. Front Med (Lausanne). 2022;(8):750731. EDN: TCFEIW doi: 10.3389/fmed.2021.750731
- Wang Q, Zhou Y, Wang X, Evers BM. Glycogen synthase kinase-3 is a negative regulator of extracellular signal-regulated kinase. Oncogene. 2006;25(1):43–50. doi: 10.1038/sj.onc.1209004
- Okunieff P, Suit HD. Toxicity, radiation sensitivity modification, and combined drug effects of ascorbic acid with misonidazole in vivo on FSaII murine fibrosarcomas. J Natl Cancer Inst. 1987;79(2):377–381. doi: 10.1093/JNCI/79.2.377
- González E, Cruces MP, Pimentel E, Sánchez P. Evidence that the radioprotector effect of ascorbic acid depends on the radiation dose rate. Environ Toxicol Pharmacol. 2018;62:210–214. doi: 10.1016/j.etap.2018.07.015
- Jagetia GC, Rajanikant GK, Rao SK, Baliga MS. Alteration in the glutathione, glutathione peroxidase, superoxide dismutase and lipid peroxidation by ascorbic acid in the skin of mice exposed to fractionated gamma radiation. Clin Chim Acta. 2003;332(1–2):111–121. doi: 10.1016/S0009-8981(03)00132-3
- Mikirova N, Ichim TE, Riordan NH. Anti-angiogenic effect of high doses of ascorbic acid. J Transl Med. 2008;6:50. doi: 10.1186/1479-5876-6-50
- Morel C, Carlson SM, White FM, Davis RJ. Mcl-1 integrates the opposing actions of signaling pathways that mediate survival and apoptosis. Mol Cell Biol. 2009;29(14):3845–3852. doi: 10.1128/MCB.00279-09
- Allum AJ, Mussallem JT, Froning CE, et al. Ascorbic acid 2-glucoside pretreatment protects cells from ionizing radiation, UVC, and short wavelength of UVB. Genes (Basel). 2020;11(3):238. doi: 10.3390/genes11030238
- Petruk G, del Giudice R, Rigano MM, Monti DM. Antioxidants from plants protect against skin photoaging. Oxidat Med Cell Longev. 2018;2018:1454936. EDN: VJFAYU doi: 10.1155/2018/1454936
- El-Sonbaty SM, Moawed FS, Elbakry MM. Amphora algae with low-level ionizing radiation exposure ameliorate D-galactosamine-induced inflammatory impairment in rat kidney. Environ Toxicol. 2021;36(4):451–459. EDN: RANHHY doi: 10.1002/tox.23050
Supplementary files
