Regulatory role of protein p53 in the functional activity of the central nervous system
- 作者: Kotov V.N.1, Kostyaeva M.G.1, Ibadullaeva S.S.1, Ganshin I.B.1, Khodorovich O.S.1, Valiev T.T.2, Kartasheva A.F.1
-
隶属关系:
- Peoples' Friendship University of Russia named after Patrice Lumumba
- National Medical Research Center of Oncology named after N.N. Blokhin
- 期: 卷 161, 编号 4 (2023)
- 页面: 113-128
- 栏目: Reviews
- ##submission.dateSubmitted##: 27.03.2024
- ##submission.dateAccepted##: 24.05.2024
- ##submission.datePublished##: 15.10.2023
- URL: https://j-morphology.com/1026-3543/article/view/629463
- DOI: https://doi.org/10.17816/morph.629463
- ID: 629463
如何引用文章
详细
Protein p53 is one of the most popular topics among researchers. Over the past 40 years since its discovery, more than 100 thousand scientific works have been written, and this is growing steadily. The increased interest in this protein among doctors lies in its participation in the development of malignant tumors, a socially significant group of diseases of the 21st century. p53 is a tumor suppressor. Normally, when exposed to damaging factors, this protein promotes DNA repair or apoptosis, depending on the damage, which in turn prevents the accumulation of cells with mutant DNAs. When p53 mutates, it loses its function, leading to abnormal cell proliferation and tumor progression.
The role of p53 is not limited to carcinogenesis. It also participates in the regulation of the central nervous system; however, its role is ambiguous. Although p53 is also involved in the embryogenesis of nervous tissue and promotes the differentiation of neural stem cells, it can also have a damaging effect on neurons.
The literature review presents current data on the structure and function of p53, the main regulator of the human genome, and its homologs (p63 and p73). These proteins are considered to play a role in programmed cell death and carcinogenesis. The role of p53 family proteins in the functioning of the central nervous system and neuroprotection was also examined.
全文:

作者简介
Vladislav Kotov
Peoples' Friendship University of Russia named after Patrice Lumumba
编辑信件的主要联系方式.
Email: fnkc.vladislav@gmail.com
ORCID iD: 0000-0001-8416-8238
俄罗斯联邦, Moscow
Margarita Kostyaeva
Peoples' Friendship University of Russia named after Patrice Lumumba
Email: kostyaeva.71@mail.ru
ORCID iD: 0000-0001-5182-0373
SPIN 代码: 4364-3214
Cand. Sci. (Veterinary), Assistant Professor
俄罗斯联邦, MoscowSvetlana Ibadullaeva
Peoples' Friendship University of Russia named after Patrice Lumumba
Email: ibadullayeva00@gmail.com
俄罗斯联邦, Moscow
Igor Ganshin
Peoples' Friendship University of Russia named after Patrice Lumumba
Email: gibdoc@yandex.ru
ORCID iD: 0000-0001-5766-9416
SPIN 代码: 2765-7044
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, MoscowOlga Khodorovich
Peoples' Friendship University of Russia named after Patrice Lumumba
Email: khodorovich-o@mail.ru
ORCID iD: 0000-0002-6014-4597
SPIN 代码: 8907-1850
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, MoscowTimur Valiev
National Medical Research Center of Oncology named after N.N. Blokhin
Email: timurvaliev@mail.ru
ORCID iD: 0000-0002-1469-2365
SPIN 代码: 9802-8610
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, MoscowAlla Kartasheva
Peoples' Friendship University of Russia named after Patrice Lumumba
Email: khodorovich-o@mail.ru
ORCID iD: 0000-0002-8533-301X
SPIN 代码: 5814-9282
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Moscow参考
- Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979;278(5701):261–263. doi: 10.1038/278261a0
- Hassin O, Oren M. Drugging p53 in cancer: one protein, many targets. Nat Rev Drug Discov. 2023;22(2):127–144. doi: 10.1038/s41573-022-00571-8
- Zierhut C. p53 and innate immune signaling in development and cancer: insights from a hematologic model of genome instability. Cancer Res. 2023;83(17):2807–2808. doi: 10.1158/0008-5472.CAN-23-1855
- Firestein GS, Echeverri F, Yeo M, et al. Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc Natl Acad Sci U S A. 1997;94(20):10895–10900. doi: 10.1073/pnas.94.20.10895
- Yamanishi Y, Boyle DL, Rosengren S, et al. Regional analysis of p53 mutations in rheumatoid arthritis synovium. Proc Natl Acad Sci U S A. 2002;99(15):10025–10030. doi: 10.1073/pnas.152333199
- Kostyaeva MG, Popadyuk VI, Kastyro IV, et al. Significance of simulation of septoplasty in rats as a factor of surgical stress in p53 protein expression and its functional role in hippocampal pyramidal neurons. Folia Otorhinolaryngologiae et Pathologiae Respiratoriae. 2023;29(2):58–68. EDN: XQMJIH doi: 10.33848/foliorl23103825-2023-29-2-58-68
- Drozdova G, Kastyro I, Khamidulin G, et al. The effect of stress on the formation of p53-positive and dark neurons in the hippocampus in a model of septoplasty in rats. Journal of Clinical Physiology and Pathology. 2022;1(1):35–45.
- Donehower LA, Soussi T, Korkut A, et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep. 2019;28(5):1370–1384.e5. Corrected and republished from: Cell Rep. 2019 Sep 10;28(11):3010. doi: 10.1016/j.celrep.2019.07.001
- Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137(3):413–431. doi: 10.1016/j.cell.2009.04.037
- Levine AJ, Hu W, Feng Z. The P53 pathway: what questions remain to be explored? Cell Death Differ. 2006;13(6):1027–1036. doi: 10.1038/sj.cdd.4401910
- Aubrey BJ, Kelly GL, Janic A, et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25(1):104–113. doi: 10.1038/cdd.2017.169
- Williams AB, Schumacher B. p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med. 2016;6(5):a026070. doi: 10.1101/cshperspect.a026070
- Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14(5):359–370. doi: 10.1038/nrc3711
- Sciot R. MDM2 amplified sarcomas: a literature review. Diagnostics (Basel). 2021;11(3):496. doi: 10.3390/diagnostics11030496
- Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995;378(6553):203–206. doi: 10.1038/378203a0
- Momand J, Wu HH, Dasgupta G. MDM2 — master regulator of the p53 tumor suppressor protein. Gene. 2000;242(1–2):15–29. doi: 10.1016/s0378-1119(99)00487-4
- Yang A, Kaghad M, Wang Y, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 1998;2(3):305–316. doi: 10.1016/s1097-2765(00)80275-0
- Kaghad M, Bonnet H, Yang A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997;90(4):809–819. doi: 10.1016/s0092-8674(00)80540-1
- Leong CO, Vidnovic N, DeYoung MP, et al. The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest. 2007;117(5):1370–1380. doi: 10.1172/JCI30866
- Levrero M, De Laurenzi V, Costanzo A, et al. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci. 2000;113 (Pt 10):1661–1670. doi: 10.1242/jcs.113.10.1661
- Kostyaeva MG, Dragunova SG, Shilin SS, et al. Modeling of rhinosurgical procedure in rats: expression of p53 protein and formation of dark neurons in the hippocampus. Head and neck. Russian Journal. 2022;10(S2S2):28–34. EDN: AMZRKJ doi: 10.25792/HN.2022.10.2.S2.28-34
- Kostyaeva MG, Kastyro IV, Yunusov TYu, et al. Protein p53 expression and dark neurons in rat hippocampus after experimental septoplasty simulation. Molecular Genetics, Microbiology and Virology. 2022;37(1):19–24. doi: 10.3103/S0891416822010037
- Mills AA, Zheng B, Wang XJ, et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 1999;398(6729):708–713. doi: 10.1038/19531
- Pistritto G, Trisciuoglio D, Ceci C, et al. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 2016;8(4):603–619. doi: 10.18632/aging.100934.
- Kerr JF, Harmon BV. In: Apoptosis: the molecular basis of cell death. Tomei LD, Cope FO, editors. Vol. 3. New York: Cold Spring Harbor Laboratory Press; 1991. P. 5–29.
- Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–257. doi: 10.1038/bjc.1972.33
- Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30(1):87. doi: 10.1186/1756-9966-30-87
- Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB J. 2009;23(6):1625–1637. doi: 10.1096/fj.08-111005
- Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol. 2003;15(6):725–731. doi: 10.1016/j.ceb.2003.10.009
- Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99–163. doi: 10.1152/physrev.00013.2006
- Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116(2):205–219. doi: 10.1016/s0092-8674(04)00046-7
- Slee EA, Adrain C, Martin SJ. Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ. 1999;6(11):1067–1074. doi: 10.1038/sj.cdd.4400601
- Martinvalet D, Zhu P, Lieberman J. Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity. 2005;22(3):355–370. d oi: 10.1016/j.immuni.2005.02.004
- Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.
- Yu J, Zhang L. No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell. 2003;4(4):248–249. doi: 10.1016/s1535-6108(03)00249-6
- Liu FT, Newland AC, Jia L. Bax conformational change is a crucial step for PUMA-mediated apoptosis in human leukemia. Biochem Biophys Res Commun. 2003;310(3):956–962. doi: 10.1016/j.bbrc.2003.09.109
- Oda E, Ohki R, Murasawa H, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 2000;288(5468):1053–1058. doi: 10.1126/science.288.5468.1053
- Harman D. Role of free radicals in aging and disease. Ann N Y Acad Sci. 1992;673:126–141. doi: 10.1111/j.1749–6632.1992.tb27444.x
- D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–592. doi: 10.1002/cbin.11137
- Burns TF, El-Deiry WS. The p53 pathway and apoptosis. J Cell Physiol. 1999;181(2):231–239. doi: 10.1002/(SICI)1097-4652(199911)181:2<231::AID-JCP5>3.0.CO;2-L
- Carson DA, Lois A. Cancer progression and p53. Lancet. 1995;346(8981):1009–1011. doi: 10.1016/s0140-6736(95)91693-8
- Zhang C, Liu J, Xu D, et al. Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol. 2020;12(9):674–687. doi: 10.1093/jmcb/mjaa040
- Chen LL, Wang WJ. p53 regulates lipid metabolism in cancer. Int J Biol Macromol. 2021;192:45–54. doi: 10.1016/j.ijbiomac.2021.09.188
- Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol. 2022;85:4–32. doi: 10.1016/j.semcancer.2021.03.010
- Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211–218. Corrected and republished from: Trends Biochem Sci. 2016;41(3):287. doi: 10.1016/j.tibs.2015.12.001
- Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004;64(7):2627–2633. doi: 10.1158/0008-5472.can-03-0846
- Xi Y, Zhang Y, Pan J, et al. Triptolide dysregulates glucose uptake via inhibition of IKKβ-NF-κB pathway by p53 activation in cardiomyocytes. Toxicol Lett. 2020;318:1–11. doi: 10.1016/j.toxlet.2019.10.001
- Yu G, Luo H, Zhang N, et al. Loss of p53 sensitizes cells to palmitic acid-induced apoptosis by reactive oxygen species accumulation. Int J Mol Sci. 2019;20(24):6268. doi: 10.3390/ijms20246268
- Sabapathy K, Lane DP. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol. 2018;15(1):13–30. doi: 10.1038/nrclinonc.2017.151
- Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR. High-frequency developmental abnormalities in p53-deficient mice. Curr Biol. 1995;5(8):931–936. doi: 10.1016/s0960-9822(95)00183-7
- Kastyro IV, Kostyaeva MG, Severin’ AE. Criteria for stress reactions in simulation of septoplasty in rats: parameters of heart rate variability. Head and neck. Russian Journal. 2022;10(S2S1):5–7. EDN: WYBQRG doi: 10.25792/HN.2022.10.2.S1.5-7
- Dittmer D, Pati S, Zambetti G, et al. Gain of function mutations in p53. Nat Genet. 1993;4(1):42–46. doi: 10.1038/ng0593-42
- Miller FD, Kaplan DR. To die or not to die: neurons and p63. Cell Cycle. 2007;6(3):312–317. doi: 10.4161/cc.6.3.3795
- Torshin VI, Kastyro IV, Reshetov IV, et al. The relationship between p53-positive neurons and dark neurons in the hippocampus of rats after surgical interventions on the nasal septum. Dokl Biochem Biophys. 2022;502(1):30–35. doi: 10.1134/S1607672922010094
- Kempermann G, Kuhn HG, Gage FH. Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc Natl Acad Sci U S A. 1997;94(19):10409–10414. doi: 10.1073/pnas.94.19.10409
- Liu H, Jia D, Li A, et al. p53 regulates neural stem cell proliferation and differentiation via BMP-Smad1 signaling and Id1. Stem Cells Dev. 2013;22(6):913–927. doi: 10.1089/scd.2012.0370
- Forsberg K, Wuttke A, Quadrato G, et al. The tumor suppressor p53 fine-tunes reactive oxygen species levels and neurogenesis via PI3 kinase signaling. J Neurosci. 2013;33(36):14318–14330. doi: 10.1523/JNEUROSCI.1056-13.2013
- Liu Z, Zhang C, Skamagki M, et al. Elevated p53 activities restrict differentiation potential of microrna-deficient pluripotent stem cells. Stem Cell Reports. 2017;9(5):1604–1617. doi: 10.1016/j.stemcr.2017.10.006
- Liu Y, Chen Y, Lu X, et al. SCYL1BP1 modulates neurite outgrowth and regeneration by regulating the Mdm2/p53 pathway. Mol Biol Cell. 2012;23(23):4506–4514. doi: 10.1091/mbc.E12-05-0362
- Stavridis MP, Lunn JS, Collins BJ, Storey KG. A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification. Development. 2007;134(16):2889–2894. doi: 10.1242/dev.02858
- Marin Navarro Navarro A, Pronk RJ, van der Geest AT, et al. p53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death Dis. 2020;11(1):52. doi: 10.1038/s41419-019-2208-7
- Culmsee C, Mattson MP. p53 in neuronal apoptosis. Biochem Biophys Res Commun. 2005;331(3):761–777. doi: 10.1016/j.bbrc.2005.03.149
- Zhao J, Dong Y, Chen X, et al. p53 Inhibition protects against neuronal ischemia/reperfusion injury by the p53/PRAS40/mTOR pathway. Oxid Med Cell Longev. 2021;2021:4729465. doi: 10.1155/2021/4729465
- Xiao Z, Shen D, Lan T, et al. Reduction of lactoferrin aggravates neuronal ferroptosis after intracerebral hemorrhagic stroke in hyperglycemic mice. Redox Biol. 2022;50:102256. doi: 10.1016/j.redox.2022.102256
- Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072. doi: 10.1016/j.cell.2012.03.042
- Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524–551. doi: 10.1016/j.redox.2015.08.020
- Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520(7545):57–62. doi: 10.1038/nature14344
- Maor-Nof M, Shipony Z, Lopez-Gonzalez R, et al. p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR). Cell. 2021;184(3):689–708.e20. doi: 10.1016/j.cell.2020.12.025
- Xu S, Li X, Wang Y. Regulation of the p53 mediated ferroptosis signaling pathway in cerebral ischemia stroke (review). Exp Ther Med. 2023;25(3):113. doi: 10.3892/etm.2023.11812
- Dragunova SG, Kosyreva TF, Severin AE. The effect of simulating sinus lifting and septoplasty on changes in the sympathetic and parasympathetic nervous systems in rats. Head and neck. Russian Journal. 2021;9(3):43–49. EDN: KBQHML doi: 10.25792/HN.2021.9.3.43-49
- Kastyro IV, Mikhalskaia PV, Khamidulin GV, et al. Expression of the P53 protein and morphological changes in neurons in the pyramidal layer of the hippocampus after simulation of surgical interventions in the nasal cavity in rats. Cell Physiol Biochem. 2023;57(1):23–33. doi: 10.33594/000000605
- Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9(7):a028035. doi: 10.1101/cshperspect.a028035
- Small SA, Perera GM, DeLaPaz R, et al. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Ann Neurol. 1999;45(4):466–472. doi: 10.1002/1531-8249(199904)45:4<466::AID-ANA8>3.0.CO;2-Q
- Li LB, Chai R, Zhang S, et al. Iron exposure and the cellular mechanisms linked to neuron degeneration in adult mice. Cells. 2019;8(2):198. doi: 10.3390/cells8020198
- Talebi M, Talebi M, Kakouri E, et al. Tantalizing role of p53 molecular pathways and its coherent medications in neurodegenerative diseases. Int J Biol Macromol. 2021;172:93–103. doi: 10.1016/j.ijbiomac.2021.01.042
- Qi Y, Cheng X, Jing H, et al. Effect of Alpinia oxyphylla-Schisandra chinensis herb pair on inflammation and apoptosis in Alzheimer’s disease mice model. J Ethnopharmacol. 2019;237:28–38. doi: 10.1016/j.jep.2019.03.029
- Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577–1590. doi: 10.1016/S0140-6736(20)32205-4
- Li H, Zhang Z, Li H, Pan X, Wang Y. New insights into the roles of p53 in central nervous system diseases. Int J Neuropsychopharmacol. 2023;26(7):465–473. doi: 10.1093/ijnp/pyad030
- Abate G, Frisoni GB, Bourdon JC, et al. The pleiotropic role of p53 in functional/dysfunctional neurons: focus on pathogenesis and diagnosis of Alzheimer’s disease. Alzheimers Res Ther. 2020;12(1):160. doi: 10.1186/s13195-020-00732-0
- Ribe EM, Jean YY, Goldstein RL, et al. Neuronal caspase 2 activity and function requires RAIDD, but not PIDD. Biochem J. 2012;444(3):591–599. doi: 10.1042/BJ20111588
- Volik PI, Kopeina GS, Zhivotovsky B, Zamaraev AV. Total recall: the role of PIDDosome components in neurodegeneration. Trends Mol Med. 2023;29(12):996–1013. doi: 10.1016/j.molmed.2023.08.008
- Raza C, Anjum R, Shakeel NUA. Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci. 2019;226:77–90. doi: 10.1016/j.lfs.2019.03.057
- Luo Q, Sun W, Wang YF, et al. Association of p53 with neurodegeneration in Parkinson’s disease. Parkinsons Dis. 2022;2022:6600944. doi: 10.1155/2022/6600944
- Campbell BCV, Khatri P. Stroke. Lancet. 2020;396(10244):129–142. doi: 10.1016/S0140-6736(20)31179-X
- Almeida A, Sánchez-Morán I, Rodríguez C. Mitochondrial-nuclear p53 trafficking controls neuronal susceptibility in stroke. IUBMB Life. 2021;73(3):582–591. doi: 10.1002/iub.2453
- Ashraf A, So PW. Spotlight on ferroptosis: iron-dependent cell death in Alzheimer’s disease. Front Aging Neurosci. 2020;12:196. doi: 10.3389/fnagi.2020.00196
- Kostyaeva M, Dragunova S, Zindovic N, et al. Pathological changes in traumatization of upper jaw under the conditions of sinus lifting simulation in rats. Journal of Clinical Physiology and Pathology (JCPP). 2023;2(1):4–10.
- Merlo P, Frost B, Peng S, et al. p53 prevents neurodegeneration by regulating synaptic genes. Proc Natl Acad Sci U S A. 2014;111(50):18055–18060. doi: 10.1073/pnas.1419083111
- Kastyro IV, Hamidulin GV, Dyachenko YuE, et al. Analysis of p53 protein expression and formation of dark neurons in the hippocampus of rats during septoplasty modeling. Russian Rhinology. 2023;31(1):27–36. EDN: KYBRDQ doi: 10.17116/rosrino20233101127
- Haider S, Naqvi F, Batool Z, et al. Decreased hippocampal 5-HT and DA levels following sub-chronic exposure to noise stress: impairment in both spatial and recognition memory in male rats. Sci Pharm. 2012;80(4):1001–1011. doi: 10.3797/scipharm.1207-15
- Kastyro IV, Reshetov IV, Khamidulin GV, et al. Influence of surgical trauma in the nasal cavity on the expression of p53 protein in the hippocampus of rats. Dokl Biochem Biophys. 2021;497(1):99–103. doi: 10.1134/S160767292102006X
- Csordás A, Mázló M, Gallyas F. Recovery versus death of “dark” (compacted) neurons in non-impaired parenchymal environment: light and electron microscopic observations. Acta Neuropathol. 2003;106(1):37–49. doi: 10.1007/s00401-003-0694-1
- Kastyro IV, Kostyaeva MG, Korolev AG. Influence of simulation of septoplasty and surgical injury of the upper jaw on changes in the noradrenergic system of the hippocampal formation. Folia Otorhinolaryngologiae et Pathologiae Respiratoriae. 2023;29(2):24–35. EDN: EVRJWG doi: 10.33848/foliorl23103825-2023-29-2-24-35
补充文件
