Regulatory role of protein p53 in the functional activity of the central nervous system

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Protein p53 is one of the most popular topics among researchers. Over the past 40 years since its discovery, more than 100 thousand scientific works have been written, and this is growing steadily. The increased interest in this protein among doctors lies in its participation in the development of malignant tumors, a socially significant group of diseases of the 21st century. p53 is a tumor suppressor. Normally, when exposed to damaging factors, this protein promotes DNA repair or apoptosis, depending on the damage, which in turn prevents the accumulation of cells with mutant DNAs. When p53 mutates, it loses its function, leading to abnormal cell proliferation and tumor progression.

The role of p53 is not limited to carcinogenesis. It also participates in the regulation of the central nervous system; however, its role is ambiguous. Although p53 is also involved in the embryogenesis of nervous tissue and promotes the differentiation of neural stem cells, it can also have a damaging effect on neurons.

The literature review presents current data on the structure and function of p53, the main regulator of the human genome, and its homologs (p63 and p73). These proteins are considered to play a role in programmed cell death and carcinogenesis. The role of p53 family proteins in the functioning of the central nervous system and neuroprotection was also examined.

Full Text

Restricted Access

About the authors

Vladislav N. Kotov

Peoples' Friendship University of Russia named after Patrice Lumumba

Author for correspondence.
Email: fnkc.vladislav@gmail.com
ORCID iD: 0000-0001-8416-8238
Russian Federation, Moscow

Margarita G. Kostyaeva

Peoples' Friendship University of Russia named after Patrice Lumumba

Email: kostyaeva.71@mail.ru
ORCID iD: 0000-0001-5182-0373
SPIN-code: 4364-3214

Cand. Sci. (Veterinary), Assistant Professor

Russian Federation, Moscow

Svetlana S. Ibadullaeva

Peoples' Friendship University of Russia named after Patrice Lumumba

Email: ibadullayeva00@gmail.com
Russian Federation, Moscow

Igor B. Ganshin

Peoples' Friendship University of Russia named after Patrice Lumumba

Email: gibdoc@yandex.ru
ORCID iD: 0000-0001-5766-9416
SPIN-code: 2765-7044

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Olga S. Khodorovich

Peoples' Friendship University of Russia named after Patrice Lumumba

Email: khodorovich-o@mail.ru
ORCID iD: 0000-0002-6014-4597
SPIN-code: 8907-1850

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Timur T. Valiev

National Medical Research Center of Oncology named after N.N. Blokhin

Email: timurvaliev@mail.ru
ORCID iD: 0000-0002-1469-2365
SPIN-code: 9802-8610

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Alla F. Kartasheva

Peoples' Friendship University of Russia named after Patrice Lumumba

Email: khodorovich-o@mail.ru
ORCID iD: 0000-0002-8533-301X
SPIN-code: 5814-9282

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

References

  1. Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979;278(5701):261–263. doi: 10.1038/278261a0
  2. Hassin O, Oren M. Drugging p53 in cancer: one protein, many targets. Nat Rev Drug Discov. 2023;22(2):127–144. doi: 10.1038/s41573-022-00571-8
  3. Zierhut C. p53 and innate immune signaling in development and cancer: insights from a hematologic model of genome instability. Cancer Res. 2023;83(17):2807–2808. doi: 10.1158/0008-5472.CAN-23-1855
  4. Firestein GS, Echeverri F, Yeo M, et al. Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc Natl Acad Sci U S A. 1997;94(20):10895–10900. doi: 10.1073/pnas.94.20.10895
  5. Yamanishi Y, Boyle DL, Rosengren S, et al. Regional analysis of p53 mutations in rheumatoid arthritis synovium. Proc Natl Acad Sci U S A. 2002;99(15):10025–10030. doi: 10.1073/pnas.152333199
  6. Kostyaeva MG, Popadyuk VI, Kastyro IV, et al. Significance of simulation of septoplasty in rats as a factor of surgical stress in p53 protein expression and its functional role in hippocampal pyramidal neurons. Folia Otorhinolaryngologiae et Pathologiae Respiratoriae. 2023;29(2):58–68. EDN: XQMJIH doi: 10.33848/foliorl23103825-2023-29-2-58-68
  7. Drozdova G, Kastyro I, Khamidulin G, et al. The effect of stress on the formation of p53-positive and dark neurons in the hippocampus in a model of septoplasty in rats. Journal of Clinical Physiology and Pathology. 2022;1(1):35–45.
  8. Donehower LA, Soussi T, Korkut A, et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep. 2019;28(5):1370–1384.e5. Corrected and republished from: Cell Rep. 2019 Sep 10;28(11):3010. doi: 10.1016/j.celrep.2019.07.001
  9. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137(3):413–431. doi: 10.1016/j.cell.2009.04.037
  10. Levine AJ, Hu W, Feng Z. The P53 pathway: what questions remain to be explored? Cell Death Differ. 2006;13(6):1027–1036. doi: 10.1038/sj.cdd.4401910
  11. Aubrey BJ, Kelly GL, Janic A, et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25(1):104–113. doi: 10.1038/cdd.2017.169
  12. Williams AB, Schumacher B. p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med. 2016;6(5):a026070. doi: 10.1101/cshperspect.a026070
  13. Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14(5):359–370. doi: 10.1038/nrc3711
  14. Sciot R. MDM2 amplified sarcomas: a literature review. Diagnostics (Basel). 2021;11(3):496. doi: 10.3390/diagnostics11030496
  15. Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995;378(6553):203–206. doi: 10.1038/378203a0
  16. Momand J, Wu HH, Dasgupta G. MDM2 — master regulator of the p53 tumor suppressor protein. Gene. 2000;242(1–2):15–29. doi: 10.1016/s0378-1119(99)00487-4
  17. Yang A, Kaghad M, Wang Y, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 1998;2(3):305–316. doi: 10.1016/s1097-2765(00)80275-0
  18. Kaghad M, Bonnet H, Yang A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997;90(4):809–819. doi: 10.1016/s0092-8674(00)80540-1
  19. Leong CO, Vidnovic N, DeYoung MP, et al. The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest. 2007;117(5):1370–1380. doi: 10.1172/JCI30866
  20. Levrero M, De Laurenzi V, Costanzo A, et al. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci. 2000;113 (Pt 10):1661–1670. doi: 10.1242/jcs.113.10.1661
  21. Kostyaeva MG, Dragunova SG, Shilin SS, et al. Modeling of rhinosurgical procedure in rats: expression of p53 protein and formation of dark neurons in the hippocampus. Head and neck. Russian Journal. 2022;10(S2S2):28–34. EDN: AMZRKJ doi: 10.25792/HN.2022.10.2.S2.28-34
  22. Kostyaeva MG, Kastyro IV, Yunusov TYu, et al. Protein p53 expression and dark neurons in rat hippocampus after experimental septoplasty simulation. Molecular Genetics, Microbiology and Virology. 2022;37(1):19–24. doi: 10.3103/S0891416822010037
  23. Mills AA, Zheng B, Wang XJ, et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 1999;398(6729):708–713. doi: 10.1038/19531
  24. Pistritto G, Trisciuoglio D, Ceci C, et al. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 2016;8(4):603–619. doi: 10.18632/aging.100934.
  25. Kerr JF, Harmon BV. In: Apoptosis: the molecular basis of cell death. Tomei LD, Cope FO, editors. Vol. 3. New York: Cold Spring Harbor Laboratory Press; 1991. P. 5–29.
  26. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–257. doi: 10.1038/bjc.1972.33
  27. Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30(1):87. doi: 10.1186/1756-9966-30-87
  28. Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB J. 2009;23(6):1625–1637. doi: 10.1096/fj.08-111005
  29. Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol. 2003;15(6):725–731. doi: 10.1016/j.ceb.2003.10.009
  30. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99–163. doi: 10.1152/physrev.00013.2006
  31. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116(2):205–219. doi: 10.1016/s0092-8674(04)00046-7
  32. Slee EA, Adrain C, Martin SJ. Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ. 1999;6(11):1067–1074. doi: 10.1038/sj.cdd.4400601
  33. Martinvalet D, Zhu P, Lieberman J. Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity. 2005;22(3):355–370. d oi: 10.1016/j.immuni.2005.02.004
  34. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.
  35. Yu J, Zhang L. No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell. 2003;4(4):248–249. doi: 10.1016/s1535-6108(03)00249-6
  36. Liu FT, Newland AC, Jia L. Bax conformational change is a crucial step for PUMA-mediated apoptosis in human leukemia. Biochem Biophys Res Commun. 2003;310(3):956–962. doi: 10.1016/j.bbrc.2003.09.109
  37. Oda E, Ohki R, Murasawa H, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 2000;288(5468):1053–1058. doi: 10.1126/science.288.5468.1053
  38. Harman D. Role of free radicals in aging and disease. Ann N Y Acad Sci. 1992;673:126–141. doi: 10.1111/j.1749–6632.1992.tb27444.x
  39. D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–592. doi: 10.1002/cbin.11137
  40. Burns TF, El-Deiry WS. The p53 pathway and apoptosis. J Cell Physiol. 1999;181(2):231–239. doi: 10.1002/(SICI)1097-4652(199911)181:2<231::AID-JCP5>3.0.CO;2-L
  41. Carson DA, Lois A. Cancer progression and p53. Lancet. 1995;346(8981):1009–1011. doi: 10.1016/s0140-6736(95)91693-8
  42. Zhang C, Liu J, Xu D, et al. Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol. 2020;12(9):674–687. doi: 10.1093/jmcb/mjaa040
  43. Chen LL, Wang WJ. p53 regulates lipid metabolism in cancer. Int J Biol Macromol. 2021;192:45–54. doi: 10.1016/j.ijbiomac.2021.09.188
  44. Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol. 2022;85:4–32. doi: 10.1016/j.semcancer.2021.03.010
  45. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211–218. Corrected and republished from: Trends Biochem Sci. 2016;41(3):287. doi: 10.1016/j.tibs.2015.12.001
  46. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004;64(7):2627–2633. doi: 10.1158/0008-5472.can-03-0846
  47. Xi Y, Zhang Y, Pan J, et al. Triptolide dysregulates glucose uptake via inhibition of IKKβ-NF-κB pathway by p53 activation in cardiomyocytes. Toxicol Lett. 2020;318:1–11. doi: 10.1016/j.toxlet.2019.10.001
  48. Yu G, Luo H, Zhang N, et al. Loss of p53 sensitizes cells to palmitic acid-induced apoptosis by reactive oxygen species accumulation. Int J Mol Sci. 2019;20(24):6268. doi: 10.3390/ijms20246268
  49. Sabapathy K, Lane DP. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol. 2018;15(1):13–30. doi: 10.1038/nrclinonc.2017.151
  50. Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR. High-frequency developmental abnormalities in p53-deficient mice. Curr Biol. 1995;5(8):931–936. doi: 10.1016/s0960-9822(95)00183-7
  51. Kastyro IV, Kostyaeva MG, Severin’ AE. Criteria for stress reactions in simulation of septoplasty in rats: parameters of heart rate variability. Head and neck. Russian Journal. 2022;10(S2S1):5–7. EDN: WYBQRG doi: 10.25792/HN.2022.10.2.S1.5-7
  52. Dittmer D, Pati S, Zambetti G, et al. Gain of function mutations in p53. Nat Genet. 1993;4(1):42–46. doi: 10.1038/ng0593-42
  53. Miller FD, Kaplan DR. To die or not to die: neurons and p63. Cell Cycle. 2007;6(3):312–317. doi: 10.4161/cc.6.3.3795
  54. Torshin VI, Kastyro IV, Reshetov IV, et al. The relationship between p53-positive neurons and dark neurons in the hippocampus of rats after surgical interventions on the nasal septum. Dokl Biochem Biophys. 2022;502(1):30–35. doi: 10.1134/S1607672922010094
  55. Kempermann G, Kuhn HG, Gage FH. Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc Natl Acad Sci U S A. 1997;94(19):10409–10414. doi: 10.1073/pnas.94.19.10409
  56. Liu H, Jia D, Li A, et al. p53 regulates neural stem cell proliferation and differentiation via BMP-Smad1 signaling and Id1. Stem Cells Dev. 2013;22(6):913–927. doi: 10.1089/scd.2012.0370
  57. Forsberg K, Wuttke A, Quadrato G, et al. The tumor suppressor p53 fine-tunes reactive oxygen species levels and neurogenesis via PI3 kinase signaling. J Neurosci. 2013;33(36):14318–14330. doi: 10.1523/JNEUROSCI.1056-13.2013
  58. Liu Z, Zhang C, Skamagki M, et al. Elevated p53 activities restrict differentiation potential of microrna-deficient pluripotent stem cells. Stem Cell Reports. 2017;9(5):1604–1617. doi: 10.1016/j.stemcr.2017.10.006
  59. Liu Y, Chen Y, Lu X, et al. SCYL1BP1 modulates neurite outgrowth and regeneration by regulating the Mdm2/p53 pathway. Mol Biol Cell. 2012;23(23):4506–4514. doi: 10.1091/mbc.E12-05-0362
  60. Stavridis MP, Lunn JS, Collins BJ, Storey KG. A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification. Development. 2007;134(16):2889–2894. doi: 10.1242/dev.02858
  61. Marin Navarro Navarro A, Pronk RJ, van der Geest AT, et al. p53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death Dis. 2020;11(1):52. doi: 10.1038/s41419-019-2208-7
  62. Culmsee C, Mattson MP. p53 in neuronal apoptosis. Biochem Biophys Res Commun. 2005;331(3):761–777. doi: 10.1016/j.bbrc.2005.03.149
  63. Zhao J, Dong Y, Chen X, et al. p53 Inhibition protects against neuronal ischemia/reperfusion injury by the p53/PRAS40/mTOR pathway. Oxid Med Cell Longev. 2021;2021:4729465. doi: 10.1155/2021/4729465
  64. Xiao Z, Shen D, Lan T, et al. Reduction of lactoferrin aggravates neuronal ferroptosis after intracerebral hemorrhagic stroke in hyperglycemic mice. Redox Biol. 2022;50:102256. doi: 10.1016/j.redox.2022.102256
  65. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072. doi: 10.1016/j.cell.2012.03.042
  66. Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524–551. doi: 10.1016/j.redox.2015.08.020
  67. Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520(7545):57–62. doi: 10.1038/nature14344
  68. Maor-Nof M, Shipony Z, Lopez-Gonzalez R, et al. p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR). Cell. 2021;184(3):689–708.e20. doi: 10.1016/j.cell.2020.12.025
  69. Xu S, Li X, Wang Y. Regulation of the p53 mediated ferroptosis signaling pathway in cerebral ischemia stroke (review). Exp Ther Med. 2023;25(3):113. doi: 10.3892/etm.2023.11812
  70. Dragunova SG, Kosyreva TF, Severin AE. The effect of simulating sinus lifting and septoplasty on changes in the sympathetic and parasympathetic nervous systems in rats. Head and neck. Russian Journal. 2021;9(3):43–49. EDN: KBQHML doi: 10.25792/HN.2021.9.3.43-49
  71. Kastyro IV, Mikhalskaia PV, Khamidulin GV, et al. Expression of the P53 protein and morphological changes in neurons in the pyramidal layer of the hippocampus after simulation of surgical interventions in the nasal cavity in rats. Cell Physiol Biochem. 2023;57(1):23–33. doi: 10.33594/000000605
  72. Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9(7):a028035. doi: 10.1101/cshperspect.a028035
  73. Small SA, Perera GM, DeLaPaz R, et al. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Ann Neurol. 1999;45(4):466–472. doi: 10.1002/1531-8249(199904)45:4<466::AID-ANA8>3.0.CO;2-Q
  74. Li LB, Chai R, Zhang S, et al. Iron exposure and the cellular mechanisms linked to neuron degeneration in adult mice. Cells. 2019;8(2):198. doi: 10.3390/cells8020198
  75. Talebi M, Talebi M, Kakouri E, et al. Tantalizing role of p53 molecular pathways and its coherent medications in neurodegenerative diseases. Int J Biol Macromol. 2021;172:93–103. doi: 10.1016/j.ijbiomac.2021.01.042
  76. Qi Y, Cheng X, Jing H, et al. Effect of Alpinia oxyphylla-Schisandra chinensis herb pair on inflammation and apoptosis in Alzheimer’s disease mice model. J Ethnopharmacol. 2019;237:28–38. doi: 10.1016/j.jep.2019.03.029
  77. Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577–1590. doi: 10.1016/S0140-6736(20)32205-4
  78. Li H, Zhang Z, Li H, Pan X, Wang Y. New insights into the roles of p53 in central nervous system diseases. Int J Neuropsychopharmacol. 2023;26(7):465–473. doi: 10.1093/ijnp/pyad030
  79. Abate G, Frisoni GB, Bourdon JC, et al. The pleiotropic role of p53 in functional/dysfunctional neurons: focus on pathogenesis and diagnosis of Alzheimer’s disease. Alzheimers Res Ther. 2020;12(1):160. doi: 10.1186/s13195-020-00732-0
  80. Ribe EM, Jean YY, Goldstein RL, et al. Neuronal caspase 2 activity and function requires RAIDD, but not PIDD. Biochem J. 2012;444(3):591–599. doi: 10.1042/BJ20111588
  81. Volik PI, Kopeina GS, Zhivotovsky B, Zamaraev AV. Total recall: the role of PIDDosome components in neurodegeneration. Trends Mol Med. 2023;29(12):996–1013. doi: 10.1016/j.molmed.2023.08.008
  82. Raza C, Anjum R, Shakeel NUA. Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci. 2019;226:77–90. doi: 10.1016/j.lfs.2019.03.057
  83. Luo Q, Sun W, Wang YF, et al. Association of p53 with neurodegeneration in Parkinson’s disease. Parkinsons Dis. 2022;2022:6600944. doi: 10.1155/2022/6600944
  84. Campbell BCV, Khatri P. Stroke. Lancet. 2020;396(10244):129–142. doi: 10.1016/S0140-6736(20)31179-X
  85. Almeida A, Sánchez-Morán I, Rodríguez C. Mitochondrial-nuclear p53 trafficking controls neuronal susceptibility in stroke. IUBMB Life. 2021;73(3):582–591. doi: 10.1002/iub.2453
  86. Ashraf A, So PW. Spotlight on ferroptosis: iron-dependent cell death in Alzheimer’s disease. Front Aging Neurosci. 2020;12:196. doi: 10.3389/fnagi.2020.00196
  87. Kostyaeva M, Dragunova S, Zindovic N, et al. Pathological changes in traumatization of upper jaw under the conditions of sinus lifting simulation in rats. Journal of Clinical Physiology and Pathology (JCPP). 2023;2(1):4–10.
  88. Merlo P, Frost B, Peng S, et al. p53 prevents neurodegeneration by regulating synaptic genes. Proc Natl Acad Sci U S A. 2014;111(50):18055–18060. doi: 10.1073/pnas.1419083111
  89. Kastyro IV, Hamidulin GV, Dyachenko YuE, et al. Analysis of p53 protein expression and formation of dark neurons in the hippocampus of rats during septoplasty modeling. Russian Rhinology. 2023;31(1):27–36. EDN: KYBRDQ doi: 10.17116/rosrino20233101127
  90. Haider S, Naqvi F, Batool Z, et al. Decreased hippocampal 5-HT and DA levels following sub-chronic exposure to noise stress: impairment in both spatial and recognition memory in male rats. Sci Pharm. 2012;80(4):1001–1011. doi: 10.3797/scipharm.1207-15
  91. Kastyro IV, Reshetov IV, Khamidulin GV, et al. Influence of surgical trauma in the nasal cavity on the expression of p53 protein in the hippocampus of rats. Dokl Biochem Biophys. 2021;497(1):99–103. doi: 10.1134/S160767292102006X
  92. Csordás A, Mázló M, Gallyas F. Recovery versus death of “dark” (compacted) neurons in non-impaired parenchymal environment: light and electron microscopic observations. Acta Neuropathol. 2003;106(1):37–49. doi: 10.1007/s00401-003-0694-1
  93. Kastyro IV, Kostyaeva MG, Korolev AG. Influence of simulation of septoplasty and surgical injury of the upper jaw on changes in the noradrenergic system of the hippocampal formation. Folia Otorhinolaryngologiae et Pathologiae Respiratoriae. 2023;29(2):24–35. EDN: EVRJWG doi: 10.33848/foliorl23103825-2023-29-2-24-35

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of p53 structure (NLS — nuclear localization sequence).

Download (360KB)
3. Fig. 2. Extrinsic (TNF-dependent) apoptotic pathway. FADD — Fas-associated DD-protein, TRADD — TNFR1-associated DD-protein, TNF — tumor necrosis factor, DISC — death-inducing signaling complex.

Download (218KB)
4. Fig. 3. Mitochondrial (intrinsic) apoptotic pathway.

Download (351KB)

Copyright (c) 2023 Eco-Vector



Периодический печатный журнал зарегистрирован как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): 0110212 от 08.02.1993.
Сетевое издание зарегистрировано как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): ЭЛ № ФС 77 - 84733 от 10.02.2023.