血液凝固对ex vivo血细胞免疫反应性的影响
- 作者: Pyshenko A.A.1, Lyubavskaya T.Y.1, Seledtsova I.A.1, Seledtsov V.I.1
-
隶属关系:
- Petrovsky National Research Center of Surgery
- 期: 卷 163, 编号 1 (2025)
- 页面: 49-57
- 栏目: Original Study Articles
- ##submission.dateSubmitted##: 27.11.2024
- ##submission.dateAccepted##: 09.01.2025
- ##submission.datePublished##: 14.05.2025
- URL: https://j-morphology.com/1026-3543/article/view/642266
- DOI: https://doi.org/10.17816/morph.642266
- EDN: https://elibrary.ru/AHNZNZ
- ID: 642266
如何引用文章
详细
论证。止血系统与免疫系统之间的相互作用保障着人体对外部病原体的防御。然而,血液凝固对免疫细胞反应性的影响研究尚不充分。
目的 — 研究血液凝固对其ex vivo免疫发应特性的影响。
材料和方法。献血者的血液样本与肝素一起培养(用于血浆的研究)或不与肝素一起培养(用于血清的研究)。在加入过氧化氢或者臭氧生理溶液后,通过化学发光强度评估了血浆和血清的抗氧化活性。用脂多糖(LPS)培养血液3或18小时,利用免疫酶法测定了细胞因子的含量。
结果。血清的抗氧化活性明显高于血浆。血液凝固过程明显减少了血细胞自发分泌和 LPS 诱导的肿瘤坏死因子TNF-α,但没有实质性影响白细胞介素IL-1、IL-6、IL-8 和 C反应蛋白的分泌。另一方面,这个过程导致了血细胞自发分泌和LPS诱导的血管内皮生长因子VEGF分泌增加。 含有LPS的血清样本也检测到了降钙素原的明显增加。
结论。血液凝固可增强血液的抗氧化性,减弱免疫活性细胞的炎症活动,从而促进再生过程的发展。
全文:

作者简介
Anatoly A. Pyshenko
Petrovsky National Research Center of Surgery
Email: anatoliy.dr@yandex.ru
ORCID iD: 0009-0002-1117-608X
SPIN 代码: 8973-0238
俄罗斯联邦, Moscow
Tatiana Ya. Lyubavskaya
Petrovsky National Research Center of Surgery
Email: rnc2016@mail.ru
ORCID iD: 0009-0002-8106-8148
SPIN 代码: 1434-2924
Cand. Sci. (Biology)
俄罗斯联邦, MoscowIrina A. Seledtsova
Petrovsky National Research Center of Surgery
Email: iax34@yandex.ru
ORCID iD: 0009-0006-0401-1876
SPIN 代码: 7001-6428
MD, Cand. Sci. (Medicine)
俄罗斯联邦, MoscowViktor I. Seledtsov
Petrovsky National Research Center of Surgery
编辑信件的主要联系方式.
Email: seledtsov@rambler.ru
ORCID iD: 0000-0002-4746-8853
SPIN 代码: 6469-9230
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Moscow参考
- Pavlov OV, Chepanov SV, Selutin AV, Selkov SA. Platelet-leukocyte interactions: immunoregulatory role and pathophysiological relevance. Medical Immunology (Russia). 2022;24(5):871–888. (In Russ.) EDN: CZUGFZ doi: 10.15789/1563-0625-PLI-2511
- Shakouri SK, Dolati S, Santhakumar J, et al. Autologous conditioned serum for degenerative diseases and prospects. Growth Factors. 2021;39(1–6):59–70. EDN: ICIAEO doi: 10.1080/08977194.2021.2012467
- Łukasik ZM, Makowski M, Makowska JS. From blood coagulation to innate and adaptive immunity: the role of platelets in the physiology and pathology of autoimmune disorders. Rheumatol Int. 2018;38(6):959–974. EDN: UQEPFZ doi: 10.1007/s00296-018-4001-9
- Seledtsov VI, Dorzhieva AB, Seledtsova GV. Antitumor and immunomodulatory effects of oxygen therapy. Medical Immunology (Russia). 2023;25(6):1319–1328. (In Russ.) EDN: IWRVPT doi: 10.15789/1563-0625-AAI-2562
- Bester J, Matshailwe C, Pretorius E. Simultaneous presence of hypercoagulation and increased clot lysis time due to IL- 1β, IL-6 and IL-8. Cytokine. 2018;110:237–242. EDN: VFDSMV doi: 10.1016/j.cyto.2018.01.007
- Antoniak S. The coagulation system in host defense. Res Pract Thromb Haemost. 2018;2(3):549–557. EDN: OWXXZB doi: 10.1002/rth2.12109
- Seledtsov VI, von Delwig AA. Therapeutic stimulation of glycolytic ATP production for treating ROS-mediated cellular senescence. Metabolites. 2022;12(12):1160. EDN: FFUCHE doi: 10.3390/metabo12121160
- Gros A, Ollivier V, Ho-Tin-Noé B. Platelets in inflammation: regulation of leukocyte activities and vascular repair. Front Immunol. 2015;5:678. doi: 10.3389/fimmu.2014.00678
- Li N, Ji Q, Hjemdahl P. Platelet-lymphocyte conjugation differs between lymphocyte subpopulations. J Thromb Haemost. 2006;4(4):874–881. doi: 10.1111/j.1538-7836.2006.01817.x
- Zamora C, Cantó E, Nieto JC, et al. Functional consequences of platelet binding to T-lymphocytes in inflammation. J Leukoc Biol. 2013;94(3):521–529. EDN: ROIDZR doi: 10.1189/jlb.0213074
- Gerdes N, Zhu L, Ersoy M, et al. Platelets regulate CD4⁺ T-cell differentiation via multiple chemokines in humans. Thromb Haemost. 2011;106(2):353–362. doi: 10.1160/TH11-01-0020
- Zhu L, Huang Z, Stålesen R, et al. Platelets provoke distinct dynamics of immune responses by differentially regulating CD4+ T-cell proliferation. J Thromb Haemost. 2014;12(7):1156–1165. doi: 10.1111/jth.12612
- Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2021;78(4):1233–1261. EDN: NDRLRG doi: 10.1007/s00018-020-03656-y
- Armstrong MT, Rickles FR, Armstrong PB. Capture of lipopolysaccharide (endotoxin) by the blood clot: a comparative study. PLoS One. 2013;8(11):e80192. doi: 10.1371/journal.pone.0080192
- Wilhelm G, Mertowska P, Mertowski S, et al. The Crossroads of the Coagulation System and the Immune System: Interactions and Connections. Int J Mol Sci. 2023;24(16):12563. EDN: AAMMSJ doi: 10.3390/ijms241612563
补充文件
