Effect of Blood Coagulation on Immunological Reactivity of Blood Cells Ex Vivo

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The interaction between hemostasis and the immune system provides the body’s defense against external pathogens. However, the impact of blood coagulation on immune cell reactivity is poorly understood.

AIM: To investigate the effect of blood coagulation on its immunoreactive properties ex vivo.

METHODS: Donor blood samples were incubated with heparin (for plasma studies) or without heparin (for serum studies). Plasma and serum antioxidant activity was evaluated by chemiluminescence intensity after addition of hydrogen peroxide or ozonated physiological solution. Cytokine content was determined by enzyme-linked immunosorbent assay after incubation of blood with lipopolysaccharide (LPS) for 3 or 18 h.

RESULTS: Serum had a significantly greater antioxidant activity compared to plasma. The blood coagulation process markedly reduced both spontaneous and LPS-induced secretion of tumor necrosis factor TNF-α by blood cells, without significantly affecting the secretion of interleukins IL-1, IL-6, IL-8 and CRP. However, this process led to an increase in both spontaneous and LPS-induced secretion of vascular endothelial growth factor (VEGF) by blood cells. Serum samples with LPS also showed a marked increase in procalcitonin.

CONCLUSION: Blood coagulation enhances the antioxidant properties of blood, reduces the inflammatory activity of immunoreactive cells, thereby promoting regenerative processes.

Full Text

Restricted Access

About the authors

Anatoly A. Pyshenko

Petrovsky National Research Center of Surgery

Email: anatoliy.dr@yandex.ru
ORCID iD: 0009-0002-1117-608X
SPIN-code: 8973-0238
Russian Federation, Moscow

Tatiana Ya. Lyubavskaya

Petrovsky National Research Center of Surgery

Email: rnc2016@mail.ru
ORCID iD: 0009-0002-8106-8148
SPIN-code: 1434-2924

Cand. Sci. (Biology)

Russian Federation, Moscow

Irina A. Seledtsova

Petrovsky National Research Center of Surgery

Email: iax34@yandex.ru
ORCID iD: 0009-0006-0401-1876
SPIN-code: 7001-6428

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Viktor I. Seledtsov

Petrovsky National Research Center of Surgery

Author for correspondence.
Email: seledtsov@rambler.ru
ORCID iD: 0000-0002-4746-8853
SPIN-code: 6469-9230

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

References

  1. Pavlov OV, Chepanov SV, Selutin AV, Selkov SA. Platelet-leukocyte interactions: immunoregulatory role and pathophysiological relevance. Medical Immunology (Russia). 2022;24(5):871–888. (In Russ.) EDN: CZUGFZ doi: 10.15789/1563-0625-PLI-2511
  2. Shakouri SK, Dolati S, Santhakumar J, et al. Autologous conditioned serum for degenerative diseases and prospects. Growth Factors. 2021;39(1–6):59–70. EDN: ICIAEO doi: 10.1080/08977194.2021.2012467
  3. Łukasik ZM, Makowski M, Makowska JS. From blood coagulation to innate and adaptive immunity: the role of platelets in the physiology and pathology of autoimmune disorders. Rheumatol Int. 2018;38(6):959–974. EDN: UQEPFZ doi: 10.1007/s00296-018-4001-9
  4. Seledtsov VI, Dorzhieva AB, Seledtsova GV. Antitumor and immunomodulatory effects of oxygen therapy. Medical Immunology (Russia). 2023;25(6):1319–1328. (In Russ.) EDN: IWRVPT doi: 10.15789/1563-0625-AAI-2562
  5. Bester J, Matshailwe C, Pretorius E. Simultaneous presence of hypercoagulation and increased clot lysis time due to IL- 1β, IL-6 and IL-8. Cytokine. 2018;110:237–242. EDN: VFDSMV doi: 10.1016/j.cyto.2018.01.007
  6. Antoniak S. The coagulation system in host defense. Res Pract Thromb Haemost. 2018;2(3):549–557. EDN: OWXXZB doi: 10.1002/rth2.12109
  7. Seledtsov VI, von Delwig AA. Therapeutic stimulation of glycolytic ATP production for treating ROS-mediated cellular senescence. Metabolites. 2022;12(12):1160. EDN: FFUCHE doi: 10.3390/metabo12121160
  8. Gros A, Ollivier V, Ho-Tin-Noé B. Platelets in inflammation: regulation of leukocyte activities and vascular repair. Front Immunol. 2015;5:678. doi: 10.3389/fimmu.2014.00678
  9. Li N, Ji Q, Hjemdahl P. Platelet-lymphocyte conjugation differs between lymphocyte subpopulations. J Thromb Haemost. 2006;4(4):874–881. doi: 10.1111/j.1538-7836.2006.01817.x
  10. Zamora C, Cantó E, Nieto JC, et al. Functional consequences of platelet binding to T-lymphocytes in inflammation. J Leukoc Biol. 2013;94(3):521–529. EDN: ROIDZR doi: 10.1189/jlb.0213074
  11. Gerdes N, Zhu L, Ersoy M, et al. Platelets regulate CD4⁺ T-cell differentiation via multiple chemokines in humans. Thromb Haemost. 2011;106(2):353–362. doi: 10.1160/TH11-01-0020
  12. Zhu L, Huang Z, Stålesen R, et al. Platelets provoke distinct dynamics of immune responses by differentially regulating CD4+ T-cell proliferation. J Thromb Haemost. 2014;12(7):1156–1165. doi: 10.1111/jth.12612
  13. Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2021;78(4):1233–1261. EDN: NDRLRG doi: 10.1007/s00018-020-03656-y
  14. Armstrong MT, Rickles FR, Armstrong PB. Capture of lipopolysaccharide (endotoxin) by the blood clot: a comparative study. PLoS One. 2013;8(11):e80192. doi: 10.1371/journal.pone.0080192
  15. Wilhelm G, Mertowska P, Mertowski S, et al. The Crossroads of the Coagulation System and the Immune System: Interactions and Connections. Int J Mol Sci. 2023;24(16):12563. EDN: AAMMSJ doi: 10.3390/ijms241612563

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Chemiluminescence intensity (CI) of plasma and serum samples in the presence of 0.35 M hydrogen peroxide (a) and saline containing 1 µg/ml of ozone (b). kPPS, total number of impulses in the photon detection mode. The control values of chemiluminescence intensity of the used solutions of hydrogen peroxide and ozonated saline were 61,870 and 2,850, respectively. Representative results with plasma and serum samples obtained from 4 donors are presented.

Download (103KB)
3. Fig. 2. Content of bioactive molecules in plasma (yellow columns) and serum (red columns) after incubation of whole blood with LPS for 3 and 18 h: a, IL-1 (n = 5); b, IL-6 (n = 5); c, IL-8 (n = 5); d, TNF-α (n = 7, *, statistically significant difference from the corresponding plasma sample, p < 0.02); e, C-reactive protein (n = 7); f, procalcitonin (n = 7, *, statistically significant difference from the corresponding plasma sample, p < 0.05); g, VEGF (n = 7, *, statistically significant difference from the corresponding plasma sample, p < 0.03). Data are presented as mean and error of mean, n is the number of samples (blood donors).

Download (344KB)
4. Fig. 3. IL-8 (a) and VEGF (b) content in plasma and serum during the first hours of whole blood incubation. Representative results of experiments with blood samples obtained from 2 donors are presented.

Download (92KB)

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Периодический печатный журнал зарегистрирован как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): 0110212 от 08.02.1993.
Сетевое издание зарегистрировано как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): ЭЛ № ФС 77 - 84733 от 10.02.2023.