外源性褪黑素对四氯化碳致毒损伤时大鼠肝细胞超微结构的影响

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

论证。长期持续照明可抑制松果体褪黑素的合成,导致昼夜节律紊乱,从而提高包括肝功能障碍在内的多种疾病的发病风险。已有研究表明,外源性褪黑素具有显著的肝保护作用,但其在抵御四氯化碳(CCl4)毒性方面的作用尚研究不足。此外,褪黑素缺乏所致的昼夜节律紊乱在肝病发生发展中的作用机制,以及外源性褪黑素在毒性损伤条件下的肝保护机制。

目的:研究黑暗剥夺与外源性褪黑素在四氯化碳致毒条件下对大鼠肝细胞线粒体超微结构的影响。

方法。研究在Wistar品系雄性大鼠(n=200)上进行,年龄为6个月,体重为(350±15)克。将动物分为5组: I组(对照组)在固定光照条件下饲养; II组在黑暗剥夺条件下饲养; III组在固定光照条件下饲养,每3天腹腔注射一次CCl4(与橄榄油混合,剂量为0.3 mg/kg); IV组在黑暗剥夺条件下饲养,每3天腹腔注射一次CCl4; V组在黑暗剥夺条件下饲养,每3天腹腔注射一次CCl4,同时每天胃内注射褪黑素(Sigma-Aldrich,美国,剂量为0.3 mg/kg)。

实验持续3周。采用透射电子显微镜对肝脏切片进行观察,以评估肝细胞的超微结构。线粒体的微形态计量分析包括测量线粒体的面积、嵴的数量和长度,以及线粒体内膜浓度(concentration of inner mitochondrial membranes, CIMM)的计算。数据统计使用GraphPad Prism v8.41软件(GraphPad Software,美国)进行处理。

结果。黑暗剥夺引起肝细胞明显结构改变,包括胞质水肿、细胞核变形、内质网表面核糖体脱落、线粒体数量减少、嵴缩短及CIMM下降。CCl4造成更严重的损伤,如胞质液泡变性、线粒体肿胀及坏死。在黑暗剥夺背景下,CCl4的毒性作用进一步加重,表现为线粒体数量减少、面积代偿性增大、嵴进一步缩短及CIMM明显下降,提示线粒体功能活性下降。褪黑素干预对肝细胞具有保护作用,表现为细胞核形态保持、脂滴数量减少及线粒体微结构参数趋于正常。

结论。在黑暗剥夺条件下,由于松果体褪黑素的缺乏,CCl4的肝毒性作用加重,其机制可能与氧化应激的诱导及线粒体功能障碍的发生有关。研究证实,褪黑素具有显著的肝保护作用,有助于稳定肝细胞的超微结构并维持其能量代谢。研究结果支持在慢性中毒和昼夜节律紊乱条件下使用褪黑素进行肝脏保护。

全文:

受限制的访问

作者简介

Sevil A. Grabeklis

Petrovsky National Research Centre of Surgery

编辑信件的主要联系方式.
Email: grabeklene@gmail.com
ORCID iD: 0009-0002-3290-3768
SPIN 代码: 4259-7674
俄罗斯联邦, Moscow

Lyudmila M. Mikhaleva

Petrovsky National Research Centre of Surgery

Email: mikhalevalm@yandex.ru
ORCID iD: 0000-0003-2052-914X
SPIN 代码: 2086-7513

Dr. Sci. (Medicine), Professor

俄罗斯联邦, Moscow

Alexandr M. Dygai

Institute Of General Pathology And Pathophysiology

Email: ombn.ramn@mail.ru
ORCID iD: 0000-0001-6286-5315
SPIN 代码: 8070-3578

Dr. Sci. (Medicine) Professor, Academician of the Russian Academy of Sciences

俄罗斯联邦, Moscow

Maria A. Kozlova

Petrovsky National Research Centre of Surgery

Email: ma.kozlova2021@outlook.com
ORCID iD: 0000-0001-6251-2560
SPIN 代码: 5647-1372

Cand. Sci. (Biology)

俄罗斯联邦, Moscow

Valery P. Chernikov

Petrovsky National Research Centre of Surgery

Email: 1200555@mail.ru
ORCID iD: 0000-0002-3253-6729
SPIN 代码: 3125-7837

Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

David A. Areshidze

Petrovsky National Research Centre of Surgery

Email: labcelpat@mail.ru
ORCID iD: 0000-0003-3006-6281
SPIN 代码: 4348-6781

Cand. Sci. (Biology)

俄罗斯联邦, Moscow

参考

  1. Areshidze DA, Kozlova MA, Chernikov VP, Kondashevskaya MV. The influence of the constant illumination on the ultrastructure of rat’s hepatocytes. Morphological Newsletter. 2023;31(1):46–53. (In Russ.) doi: 10.20340/mv-mn.2023.31(1).758 EDN: ZGVUHK
  2. Fárková E, Schneider J, Šmotek M, et al. Weight loss in conservative treatment of obesity in women is associated with physical activity and circadian phenotype: a longitudinal observational study. Biopsychosoc Med. 2019;13:24. doi: 10.1186/s13030-019-0163-2 EDN: DSJXIU
  3. Anisimov VN. Light desynchronosis and health. Light & Engineering. 2019;(1):30–38. (In Russ.) EDN: YXUWLZ
  4. Trufakin VA, Shurlygina AV, Michurina SV. Lymphoid system − circadian temporary organization and desynchronosis. Bulletin of the Siberian Branch of the Russian Academy of Medical Sciences. 2012;32(1):5–12. (In Russ.) EDN: OPUFHD
  5. Zlobina OV, Pakhomy SS, Bugaeva IO, et al. The morphological changes of liver in laboratory animals at the light-induced desynchronosis. Journal of New Medical Technologies, eEdition. 2018;12(5):245–249. (In Russ.) EDN: YMZZPF
  6. McGill MR, Jaeschke H. Animal models of drug-induced liver injury. Biochim Biophys Acta Mol Basis Dis. 2019;1865(5):1031–1039. doi: 10.1016/j.bbadis.2018.08.037
  7. Weber LW, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 2003;33(2):105–136. doi: 10.1080/713611034
  8. Clemens MM, McGill MR, Apte U. Mechanisms and biomarkers of liver regeneration after drug-induced liver injury. Adv Pharmacol. 2019;85:241–262. doi: 10.1016/bs.apha.2019.03.001
  9. Li X, Wang L, Chen C. Effects of exogenous thymosin β4 on carbon tetrachloride-induced liver injury and fibrosis. Sci Rep. 2017;7(1):5872. doi: 10.1038/s41598-017-06318-5 EDN: EOXVUQ
  10. Xu P, Yao J, Ji J, et al. Deficiency of apoptosisstimulating protein 2 of p53 protects mice from acute hepatic injury induced by CCl4 via autophagy. Toxicol Lett. 2019;316:85–93. doi: 10.1016/j.toxlet.2019.09.006
  11. Boll M, Weber LW, Becker E, Stampfl A. Mechanism of carbon tetrachloride-induced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites. Z Naturforsch C J Biosci. 2001;56(7-8):649–659. doi: 10.1515/znc-2001-7-826
  12. Taira Z, Ueda Y, Monmasu H, et al. Characteristics of intracellular Ca2+ signals consisting of two successive peaks in hepatocytes during liver regeneration after 70% partial hepatectomy in rats. J Exp Pharmacol. 2016;8:21–33. doi: 10.2147/JEP.S106084 EDN: XZHMHF
  13. Cao R, Cao C, Hu X, et al. Kaempferol attenuates carbon tetrachloride (CCl4)-induced hepatic fibrosis by promoting ASIC1a degradation and suppression of the ASIC1a-mediated ERS. Phytomedicine. 2023;121:155125. doi: 10.1016/j.phymed.2023.155125 EDN: MVDPYM
  14. Tan DX, Manchester LC, Reiter RJ, et al. Identification of highly elevated levels of melatonin in bone marrow: its origin and significance. Biochim Biophys Acta. 1999;1472(1-2):206–214. doi: 10.1016/s0304-4165(99)00125-7 EDN: ADVNON
  15. Acuña-Castroviejo D, Escames G, Venegas C, et al. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci. 2014;71(16):2997–3025. doi: 10.1007/s00018-014-1579-2 EDN: UVWSGR
  16. Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res. 2014;57(2):131–146. doi: 10.1111/jpi.12162 EDN: URPJML
  17. Pan M, Song YL, Xu JM, Gan HZ. Melatonin ameliorates nonalcoholic fatty liver induced by high-fat diet in rats. J Pineal Res. 2006;41(1):79–84. doi: 10.1111/j.1600-079X.2006.00346.x
  18. Hatzis G, Ziakas P, Kavantzas N, et al. Melatonin attenuates high fat diet-induced fatty liver disease in rats. World J Hepatol. 2013;5(4):160–169. doi: 10.4254/wjh.v5.i4.160
  19. Tsai CC, Lin YJ, Yu HR, et al. Melatonin alleviates liver steatosis induced by prenatal dexamethasone exposure and postnatal high-fat diet. Exp Ther Med. 2018;16(2):917–924. doi: 10.3892/etm.2018.6256
  20. Fernández A, Ordóñez R, Reiter RJ, et al. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res. 2015;59(3):292–307. doi: 10.1111/jpi.12264
  21. Liu H, Zheng Y, Kan S, et al. Melatonin inhibits tongue squamous cell carcinoma: Interplay of ER stress-induced apoptosis and autophagy with cell migration. Heliyon. 2024;10(8):e29291. doi: 10.1016/j.heliyon.2024.e29291 EDN: WLLYJX
  22. Bona S, Rodrigues G, Moreira AJ, et al. Antifibrogenic effect of melatonin in rats with experimental liver cirrhosis induced by carbon tetrachloride. JGH Open. 2018;2(4):117–123. doi: 10.1002/jgh3.12055
  23. Colares JR, Hartmann RM, Schemitt EG, et al. Melatonin prevents oxidative stress, inflammatory activity, and DNA damage in cirrhotic rats. World J Gastroenterol. 2022;28(3):348–364. doi: 10.3748/wjg.v28.i3.348 EDN: GOPHIU
  24. Fernández-Palanca P, Méndez-Blanco C, Fondevila F, et al. Melatonin as an antitumor agent against liver cancer: An updated systematic review. Antioxidants (Basel). 2021;10(1):103. doi: 10.3390/antiox10010103 EDN: MTKHAD
  25. Mortezaee K. Human hepatocellular carcinoma: Protection by melatonin. J Cell Physiol. 2018;233(10):6486–6508. doi: 10.1002/jcp.26586 EDN: YIPHTF
  26. Wang H, Wei W, Wang NP, et al. Melatonin ameliorates carbon tetrachloride-induced hepatic fibrogenesis in rats via inhibition of oxidative stress. Life Sci. 2005;77(15):1902–1915. doi: 10.1016/j.lfs.2005.04.013
  27. Noyan T, Kömüroğlu U, Bayram I, Sekeroğlu MR. Comparison of the effects of melatonin and pentoxifylline on carbon tetrachloride-induced liver toxicity in mice. Cell Biol Toxicol. 2006;22(6):381–391. doi: 10.1007/s10565-006-0019-y EDN: YADRVT
  28. Aranda M, Albendea CD, Lostalé F, et al. In vivo hepatic oxidative stress because of carbon tetrachloride toxicity: protection by melatonin and pinoline. J Pineal Res. 2010;49(1):78–85. doi: 10.1111/j.1600-079X.2010.00769.x
  29. Mortezaee K, Khanlarkhani N. Melatonin application in targeting oxidative-induced liver injuries: A review. J Cell Physiol. 2018;233(5):4015–4032. doi: 10.1002/jcp.26209 EDN: YEDMAP
  30. Jie L, Hong RT, Zhang YJ, et al. Melatonin alleviates liver fibrosis by inhibiting autophagy. Curr Med Sci. 2022;42(3):498–504. doi: 10.1007/s11596-022-2530-7 EDN: KBWZLN
  31. Hong RT, Xu JM, Mei Q. Melatonin ameliorates experimental hepatic fibrosis induced by carbon tetrachloride in rats. World J Gastroenterol. 2009;15(12):1452–1458. doi: 10.3748/wjg.15.1452 EDN: MGYKHZ
  32. Devaraj E, Roy A, Royapuram Veeraragavan G, et al. β-Sitosterol attenuates carbon tetrachloride-induced oxidative stress and chronic liver injury in rats. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(6):1067–1075. doi: 10.1007/s00210-020-01810-8 EDN: NRUJBQ
  33. Balkanov AS, Rozanov ID, Golanov AV, et al. Endothelium changes of peritumoral zone capillaries after brain glioblastoma adjuvant radiation therapy. Clinical and Experimental Morphology. 2021;10(1):33–40. (In Russ.) doi: 10.31088/CEM2021.10.1.33-40 EDN: KOULJY
  34. Kurbat MN, Kravchuk RI, Astrowskaja АB. Effect of melatonin on the morphology of mitochondria and other cellular components of the hepatocyte. Hepatology and Gastroenterology. 2018;2(2):138–142. (In Russ.) EDN: TTCMUQ
  35. Bezborodkina NN, Okovity SV, Kudryavtseva MV, et al. Morphometry of hepatocyte mitochondrial apparatus in normal and cirrhotic rat liver. Cytology. 2008;50(3):228–235. (In Russ.) EDN: ILHEHH
  36. Reiter RJ, Mayo JC, Tan DX, et al. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016;61(3):253–278. doi: 10.1111/jpi.12360 EDN: VJOHGY
  37. Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol. 2018;175(16):3190–3199. doi: 10.1111/bph.14116
  38. Tan DX, Manchester LC, Qin L, Reiter RJ. Melatonin: A mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int J Mol Sci. 2016;17(12):2124. doi: 10.3390/ijms17122124 EDN: XZPHQN

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Ultrastructure of hepatocytes in rats from the control group (1): G, glycogen; RER, rough endoplasmic reticulum; SER, smooth endoplasmic reticulum; M, mitochondrion; Er, erythrocyte; N, nucleus; Nu, nucleolus. Transmission electron microscopy, ×8000 magnification, scale bar 5 µm.

下载 (377KB)
3. Fig. 2. Ultrastructure of hepatocytes in rats subjected to dark deprivation (group 2): V, vacuole; G, glycogen; RER, rough endoplasmic reticulum; M, mitochondrion; Mf, macrophage; Ed, cytoplasmic edema; R, ribosomes; N, nucleus; Nu, nucleolus. Transmission electron microscopy, ×8000 magnification, scale bar 5 µm.

下载 (407KB)
4. Fig. 3. Ultrastructure of hepatocytes in rats with toxic liver injury under fixed light–dark conditions (group 3): L, lipids; Ly, lysosome; M, mitochondrion; P, peroxisome; N, nucleus; Nu, nucleolus. Transmission electron microscopy, magnification: a, ×6700; b, ×14000; scale bars: a, 5 µm; b, 2 µm.

下载 (397KB)
5. Fig. 4. Ultrastructure of hepatocytes in rats with toxic liver injury combined with dark deprivation (group 4): C, collagen fibers; L, lipids; M, mitochondrion; MN, focus of micronecrosis; Er, erythrocyte; N, nucleus, Nu, nucleolus. Transmission electron microscopy, ×6700 magnification, scale bar 5 µm.

下载 (369KB)
6. Fig. 5. Ultrastructure of hepatocytes in rats treated with melatonin under toxic liver injury and dark deprivation (group 5): M, mitochondrion; P, peroxisome; N, nucleus; Nu, nucleolus. Transmission electron microscopy, ×8000 magnification, scale bar 5 µm.

下载 (220KB)

版权所有 © Eco-Vector, 2025



Периодический печатный журнал зарегистрирован как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): 0110212 от 08.02.1993.
Сетевое издание зарегистрировано как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): ЭЛ № ФС 77 - 84733 от 10.02.2023.