Effect of exogenous melatonin on the ultrastructure of hepatocytes in rats with experimental toxic liver injury

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Prolonged exposure to constant light suppresses melatonin synthesis by the pineal gland and induces desynchronosis, increasing the risk of various pathological conditions, including liver dysfunction. Exogenous melatonin is known to exert a pronounced hepatoprotective effect; however, its role in protecting the liver against carbon tetrachloride (CCl4)-induced toxicity remains insufficiently understood. Moreover, the impact of disrupted circadian rhythmicity under melatonin deficiency on the development of liver pathology, as well as the mechanisms of melatonin’s hepatoprotective action in toxic injury.

AIM: The work aimed to investigate the effects of dark deprivation and exogenous melatonin on the ultrastructure of mitochondria in rat hepatocytes under carbon tetrachloride-induced toxic liver injury.

METHODS: The study involved male Wistar rats (n = 200), aged 6 months, with a body weight of (350 ± 15) g. The animals were divided into five groups: group 1, control group, fixed light–dark cycle; group 2, dark deprivation; group 3, fixed light–dark cycle with intraperitoneal CCl4 (in olive oil, 0.3 mg/kg) every 3 days; group 4, dark deprivation with CCl4 every 3 days; group 5, dark deprivation with CCl4 injections every 3 days, (intraperitoneally) and daily melatonin administration (Sigma-Aldrich, USA; intragastrically, 0.3 mg/kg).

The experiment lasted 3 weeks. The ultrastructure of hepatocytes was evaluated using transmission electron microscopy. The micromorphometric analysis of mitochondria included measurement of organelle area, quantification and length of cristae, and calculation of the concentration of inner mitochondrial membranes. The statistical analysis was performed using GraphPad Prism v8.41 (GraphPad Software, USA).

RESULTS: Dark deprivation caused marked structural changes in hepatocytes, including cytoplasmic swelling, nuclear deformation, ribosomal detachment from the endoplasmic reticulum, reduced mitochondrial number, shortened cristae, and decreased concentration of inner mitochondrial membranes. CCl₄ exposure resulted in more severe damage to hepatocytes, such as cytoplasmic vacuolization, mitochondrial swelling, and necrosis. Under dark deprivation, CCl₄ toxicity was exacerbated: total mitochondrial count decreased with compensatory enlargement, cristae were shortened, and the concentration of inner mitochondrial membranes declined, indicating reduced mitochondrial function. Melatonin has a protective effect, preserving nuclear morphology, reducing lipid vacuole accumulation, and normalizing micromorphometric parameters of mitochondria.

CONCLUSION: Pineal melatonin deficiency under dark deprivation aggravates CCl₄-induced hepatotoxicity due to induction of oxidative stress and mitochondrial dysfunction. Melatonin demonstrates a pronounced hepatoprotective effect by stabilizing hepatocyte ultrastructure and supporting energy metabolism. These findings support the use of melatonin in preventing liver damage under chronic intoxication and circadian rhythmicity disruption.

Full Text

Restricted Access

About the authors

Sevil A. Grabeklis

Petrovsky National Research Centre of Surgery

Author for correspondence.
Email: grabeklene@gmail.com
ORCID iD: 0009-0002-3290-3768
SPIN-code: 4259-7674
Russian Federation, Moscow

Lyudmila M. Mikhaleva

Petrovsky National Research Centre of Surgery

Email: mikhalevalm@yandex.ru
ORCID iD: 0000-0003-2052-914X
SPIN-code: 2086-7513

Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Alexandr M. Dygai

Institute Of General Pathology And Pathophysiology

Email: ombn.ramn@mail.ru
ORCID iD: 0000-0001-6286-5315
SPIN-code: 8070-3578

Dr. Sci. (Medicine) Professor, Academician of the Russian Academy of Sciences

Russian Federation, Moscow

Maria A. Kozlova

Petrovsky National Research Centre of Surgery

Email: ma.kozlova2021@outlook.com
ORCID iD: 0000-0001-6251-2560
SPIN-code: 5647-1372

Cand. Sci. (Biology)

Russian Federation, Moscow

Valery P. Chernikov

Petrovsky National Research Centre of Surgery

Email: 1200555@mail.ru
ORCID iD: 0000-0002-3253-6729
SPIN-code: 3125-7837

Cand. Sci. (Medicine)

Russian Federation, Moscow

David A. Areshidze

Petrovsky National Research Centre of Surgery

Email: labcelpat@mail.ru
ORCID iD: 0000-0003-3006-6281
SPIN-code: 4348-6781

Cand. Sci. (Biology)

Russian Federation, Moscow

References

  1. Areshidze DA, Kozlova MA, Chernikov VP, Kondashevskaya MV. The influence of the constant illumination on the ultrastructure of rat’s hepatocytes. Morphological Newsletter. 2023;31(1):46–53. (In Russ.) doi: 10.20340/mv-mn.2023.31(1).758 EDN: ZGVUHK
  2. Fárková E, Schneider J, Šmotek M, et al. Weight loss in conservative treatment of obesity in women is associated with physical activity and circadian phenotype: a longitudinal observational study. Biopsychosoc Med. 2019;13:24. doi: 10.1186/s13030-019-0163-2 EDN: DSJXIU
  3. Anisimov VN. Light desynchronosis and health. Light & Engineering. 2019;(1):30–38. (In Russ.) EDN: YXUWLZ
  4. Trufakin VA, Shurlygina AV, Michurina SV. Lymphoid system − circadian temporary organization and desynchronosis. Bulletin of the Siberian Branch of the Russian Academy of Medical Sciences. 2012;32(1):5–12. (In Russ.) EDN: OPUFHD
  5. Zlobina OV, Pakhomy SS, Bugaeva IO, et al. The morphological changes of liver in laboratory animals at the light-induced desynchronosis. Journal of New Medical Technologies, eEdition. 2018;12(5):245–249. (In Russ.) EDN: YMZZPF
  6. McGill MR, Jaeschke H. Animal models of drug-induced liver injury. Biochim Biophys Acta Mol Basis Dis. 2019;1865(5):1031–1039. doi: 10.1016/j.bbadis.2018.08.037
  7. Weber LW, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 2003;33(2):105–136. doi: 10.1080/713611034
  8. Clemens MM, McGill MR, Apte U. Mechanisms and biomarkers of liver regeneration after drug-induced liver injury. Adv Pharmacol. 2019;85:241–262. doi: 10.1016/bs.apha.2019.03.001
  9. Li X, Wang L, Chen C. Effects of exogenous thymosin β4 on carbon tetrachloride-induced liver injury and fibrosis. Sci Rep. 2017;7(1):5872. doi: 10.1038/s41598-017-06318-5 EDN: EOXVUQ
  10. Xu P, Yao J, Ji J, et al. Deficiency of apoptosisstimulating protein 2 of p53 protects mice from acute hepatic injury induced by CCl4 via autophagy. Toxicol Lett. 2019;316:85–93. doi: 10.1016/j.toxlet.2019.09.006
  11. Boll M, Weber LW, Becker E, Stampfl A. Mechanism of carbon tetrachloride-induced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites. Z Naturforsch C J Biosci. 2001;56(7-8):649–659. doi: 10.1515/znc-2001-7-826
  12. Taira Z, Ueda Y, Monmasu H, et al. Characteristics of intracellular Ca2+ signals consisting of two successive peaks in hepatocytes during liver regeneration after 70% partial hepatectomy in rats. J Exp Pharmacol. 2016;8:21–33. doi: 10.2147/JEP.S106084 EDN: XZHMHF
  13. Cao R, Cao C, Hu X, et al. Kaempferol attenuates carbon tetrachloride (CCl4)-induced hepatic fibrosis by promoting ASIC1a degradation and suppression of the ASIC1a-mediated ERS. Phytomedicine. 2023;121:155125. doi: 10.1016/j.phymed.2023.155125 EDN: MVDPYM
  14. Tan DX, Manchester LC, Reiter RJ, et al. Identification of highly elevated levels of melatonin in bone marrow: its origin and significance. Biochim Biophys Acta. 1999;1472(1-2):206–214. doi: 10.1016/s0304-4165(99)00125-7 EDN: ADVNON
  15. Acuña-Castroviejo D, Escames G, Venegas C, et al. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci. 2014;71(16):2997–3025. doi: 10.1007/s00018-014-1579-2 EDN: UVWSGR
  16. Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res. 2014;57(2):131–146. doi: 10.1111/jpi.12162 EDN: URPJML
  17. Pan M, Song YL, Xu JM, Gan HZ. Melatonin ameliorates nonalcoholic fatty liver induced by high-fat diet in rats. J Pineal Res. 2006;41(1):79–84. doi: 10.1111/j.1600-079X.2006.00346.x
  18. Hatzis G, Ziakas P, Kavantzas N, et al. Melatonin attenuates high fat diet-induced fatty liver disease in rats. World J Hepatol. 2013;5(4):160–169. doi: 10.4254/wjh.v5.i4.160
  19. Tsai CC, Lin YJ, Yu HR, et al. Melatonin alleviates liver steatosis induced by prenatal dexamethasone exposure and postnatal high-fat diet. Exp Ther Med. 2018;16(2):917–924. doi: 10.3892/etm.2018.6256
  20. Fernández A, Ordóñez R, Reiter RJ, et al. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res. 2015;59(3):292–307. doi: 10.1111/jpi.12264
  21. Liu H, Zheng Y, Kan S, et al. Melatonin inhibits tongue squamous cell carcinoma: Interplay of ER stress-induced apoptosis and autophagy with cell migration. Heliyon. 2024;10(8):e29291. doi: 10.1016/j.heliyon.2024.e29291 EDN: WLLYJX
  22. Bona S, Rodrigues G, Moreira AJ, et al. Antifibrogenic effect of melatonin in rats with experimental liver cirrhosis induced by carbon tetrachloride. JGH Open. 2018;2(4):117–123. doi: 10.1002/jgh3.12055
  23. Colares JR, Hartmann RM, Schemitt EG, et al. Melatonin prevents oxidative stress, inflammatory activity, and DNA damage in cirrhotic rats. World J Gastroenterol. 2022;28(3):348–364. doi: 10.3748/wjg.v28.i3.348 EDN: GOPHIU
  24. Fernández-Palanca P, Méndez-Blanco C, Fondevila F, et al. Melatonin as an antitumor agent against liver cancer: An updated systematic review. Antioxidants (Basel). 2021;10(1):103. doi: 10.3390/antiox10010103 EDN: MTKHAD
  25. Mortezaee K. Human hepatocellular carcinoma: Protection by melatonin. J Cell Physiol. 2018;233(10):6486–6508. doi: 10.1002/jcp.26586 EDN: YIPHTF
  26. Wang H, Wei W, Wang NP, et al. Melatonin ameliorates carbon tetrachloride-induced hepatic fibrogenesis in rats via inhibition of oxidative stress. Life Sci. 2005;77(15):1902–1915. doi: 10.1016/j.lfs.2005.04.013
  27. Noyan T, Kömüroğlu U, Bayram I, Sekeroğlu MR. Comparison of the effects of melatonin and pentoxifylline on carbon tetrachloride-induced liver toxicity in mice. Cell Biol Toxicol. 2006;22(6):381–391. doi: 10.1007/s10565-006-0019-y EDN: YADRVT
  28. Aranda M, Albendea CD, Lostalé F, et al. In vivo hepatic oxidative stress because of carbon tetrachloride toxicity: protection by melatonin and pinoline. J Pineal Res. 2010;49(1):78–85. doi: 10.1111/j.1600-079X.2010.00769.x
  29. Mortezaee K, Khanlarkhani N. Melatonin application in targeting oxidative-induced liver injuries: A review. J Cell Physiol. 2018;233(5):4015–4032. doi: 10.1002/jcp.26209 EDN: YEDMAP
  30. Jie L, Hong RT, Zhang YJ, et al. Melatonin alleviates liver fibrosis by inhibiting autophagy. Curr Med Sci. 2022;42(3):498–504. doi: 10.1007/s11596-022-2530-7 EDN: KBWZLN
  31. Hong RT, Xu JM, Mei Q. Melatonin ameliorates experimental hepatic fibrosis induced by carbon tetrachloride in rats. World J Gastroenterol. 2009;15(12):1452–1458. doi: 10.3748/wjg.15.1452 EDN: MGYKHZ
  32. Devaraj E, Roy A, Royapuram Veeraragavan G, et al. β-Sitosterol attenuates carbon tetrachloride-induced oxidative stress and chronic liver injury in rats. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(6):1067–1075. doi: 10.1007/s00210-020-01810-8 EDN: NRUJBQ
  33. Balkanov AS, Rozanov ID, Golanov AV, et al. Endothelium changes of peritumoral zone capillaries after brain glioblastoma adjuvant radiation therapy. Clinical and Experimental Morphology. 2021;10(1):33–40. (In Russ.) doi: 10.31088/CEM2021.10.1.33-40 EDN: KOULJY
  34. Kurbat MN, Kravchuk RI, Astrowskaja АB. Effect of melatonin on the morphology of mitochondria and other cellular components of the hepatocyte. Hepatology and Gastroenterology. 2018;2(2):138–142. (In Russ.) EDN: TTCMUQ
  35. Bezborodkina NN, Okovity SV, Kudryavtseva MV, et al. Morphometry of hepatocyte mitochondrial apparatus in normal and cirrhotic rat liver. Cytology. 2008;50(3):228–235. (In Russ.) EDN: ILHEHH
  36. Reiter RJ, Mayo JC, Tan DX, et al. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016;61(3):253–278. doi: 10.1111/jpi.12360 EDN: VJOHGY
  37. Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol. 2018;175(16):3190–3199. doi: 10.1111/bph.14116
  38. Tan DX, Manchester LC, Qin L, Reiter RJ. Melatonin: A mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int J Mol Sci. 2016;17(12):2124. doi: 10.3390/ijms17122124 EDN: XZPHQN

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Ultrastructure of hepatocytes in rats from the control group (1): G, glycogen; RER, rough endoplasmic reticulum; SER, smooth endoplasmic reticulum; M, mitochondrion; Er, erythrocyte; N, nucleus; Nu, nucleolus. Transmission electron microscopy, ×8000 magnification, scale bar 5 µm.

Download (377KB)
3. Fig. 2. Ultrastructure of hepatocytes in rats subjected to dark deprivation (group 2): V, vacuole; G, glycogen; RER, rough endoplasmic reticulum; M, mitochondrion; Mf, macrophage; Ed, cytoplasmic edema; R, ribosomes; N, nucleus; Nu, nucleolus. Transmission electron microscopy, ×8000 magnification, scale bar 5 µm.

Download (407KB)
4. Fig. 3. Ultrastructure of hepatocytes in rats with toxic liver injury under fixed light–dark conditions (group 3): L, lipids; Ly, lysosome; M, mitochondrion; P, peroxisome; N, nucleus; Nu, nucleolus. Transmission electron microscopy, magnification: a, ×6700; b, ×14000; scale bars: a, 5 µm; b, 2 µm.

Download (397KB)
5. Fig. 4. Ultrastructure of hepatocytes in rats with toxic liver injury combined with dark deprivation (group 4): C, collagen fibers; L, lipids; M, mitochondrion; MN, focus of micronecrosis; Er, erythrocyte; N, nucleus, Nu, nucleolus. Transmission electron microscopy, ×6700 magnification, scale bar 5 µm.

Download (369KB)
6. Fig. 5. Ultrastructure of hepatocytes in rats treated with melatonin under toxic liver injury and dark deprivation (group 5): M, mitochondrion; P, peroxisome; N, nucleus; Nu, nucleolus. Transmission electron microscopy, ×8000 magnification, scale bar 5 µm.

Download (220KB)

Copyright (c) 2025 Eco-Vector



Периодический печатный журнал зарегистрирован как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): 0110212 от 08.02.1993.
Сетевое издание зарегистрировано как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): ЭЛ № ФС 77 - 84733 от 10.02.2023.