Study of xenon ion-induced silicon amorphization using transmission electron microscopy and Monte Carlo simulation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Xenon ions with energies of 5 and 8 keV were used to amorphize a single-crystal silicon substrate. Cross-sectional samples of the irradiated areas were examined by transmission electron microscopy in the bright field mode, and the thicknesses of the amorphized layers were determined based on the analysis of the obtained images. Simulation of the ion bombardment process was carried out using the Monte Carlo technique along with critical point defect density model, which made it possible to obtain theoretical estimates of the thickness of these layers. The calculation results were compared with experimental data. Monte Carlo simulation was shown to describe low-energy xenon ion-induced amorphization of single-crystal silicon with acceptable precision.

Full Text

Restricted Access

About the authors

O. V. Podorozhniy

National Research University of Electronic Technology

Author for correspondence.
Email: lemi@miee.ru
Russian Federation, Zelenograd, Moscow

A. V. Rumyantsev

National Research University of Electronic Technology

Email: lemi@miee.ru
Russian Federation, Zelenograd, Moscow

N. I. Borgardt

National Research University of Electronic Technology

Email: lemi@miee.ru
Russian Federation, Zelenograd, Moscow

D. K. Minnebaev

Lomonosov Moscow State University

Email: lemi@miee.ru
Russian Federation, Moscow

A. E. Ieshkin

Lomonosov Moscow State University

Email: lemi@miee.ruро
Russian Federation, Moscow

References

  1. Ghosh B., Ray S.C., Pattanaik S., Sarma S., Mishra D.K., Pontsho M., Pong W. F. // J. Phys. D. 2018. V. 51. № 9. P. 095304. https://doi.org/10.1088/1361-6463/aaa832
  2. Vasquez L., Redondo-Cubero A., Lorenz K., Palomares F.J., Cuerno R. // J. Phys.: Condens. Matter. 2022. V. 34. № 33. P. 333002. https://doi.org/10.1088/1361-648X/ac75a1
  3. Hlawacek G., Veligura V., van Gastel R., Poelsema B. // J. Vac. Sci. Technol. B. 2014. V. 32. № 2. P. 020801. https://doi.org/10.1116/1.4863676
  4. Petrov Y.V., Vyvenko O.F. // Beilstein J. Nanotechnol. 2015. V. 6. № 1. P. 1125. https://doi.org/10.3762/bjnano.6.114
  5. Cherepin V.T. Secondary Ion Mass Spectroscopy of Solid Surfaces. CRC Press, 2020. 138 p. https://doi.org/10.1201/9780429070327
  6. Sawyer W.D., Weber J., Nabert G., Schmälzlin J., Habermeier H.-U. // J. Appl. Phys. 1990. V. 68. P. 6179. https://doi.org/10.1063/1.346908
  7. Fleisher E.L., Norton M.G. // Heterog. Chem. Rev. 1996. V. 3. № 3. P. 171. https://doi.org/10.1002/(SICI)1234-985X(199609) 3:33.0.CO;2-D
  8. Smith N.S., Notte J.A., Steele A.V. // MRS Bull. 2014. V. 39. № 4. P. 329. https://doi.org/10.1557/mrs.2014.53
  9. Höflich K., Hobler G., Allen F.I. et al. // Appl. Phys. Rev. 2023. V. 10. № 4. https://doi.org/10.1063/5.0162597
  10. Donovan E.P., Hubler G.K., Waddell C.N. // Nucl. Instrum. Methods Phys. Res. B. 1987. V. 19–20. P. 590. https://doi.org/10.1016/S0168-583X(87)80118-0
  11. Mikhailenko M.S., Pestov A.E., Chkhalo N.I., Zorina M.V., Chernyshev A.K., Salashchenko N.N., Kuznetsov I.I. // Appl. Opt. 2022. V. 61. № 10. P. 2825. https://doi.org/10.1364/AO.455096
  12. Van Leer B., Genc A., Passey R. // Microsc. Microanal. 2017. V. 23. № 1. P. 296. https://doi.org/10.1017/S1431927617002161
  13. Kelley R., Song K., Van Leer B., Wall D., Kwakman L. // Microsc. Microanal. 2013. V. 19. № 2. P. 862. https://doi.org/10.1017/S1431927613006302
  14. Rumyantsev A.V., Borgardt N.I., Prikhodko A.S., Chaplygin Yu.A. // Appl. Surf. Sci. 2021. V. 540. P. 148278. https://doi.org/10.1016/j.apsusc.2020.148278
  15. Wittmaack K., Oppolzer H. // Nucl. Instrum. Methods Phys. Res. B. 2011. V. 269. № 3. P. 380. https://doi.org/10.1016/j.nimb.2010.11.025
  16. Румянцев А.В., Приходько А.С., Боргардт Н.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 9. P. 103. https://doi.org/10.31857/S1028096020090174
  17. Huang J., Löffler M., Moeller W., Zschech E. // Microelectron. Reliab. 2016. V. 64. P. 390. https://doi.org/10.1016/j.microrel.2016.07.087
  18. Румянцев А.В., Боргардт Н.И., Волков Р.Л. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2018. № 6. С. 102. https://doi.org/10.7868/S0207352818060197
  19. Li Y.G., Yang Y., Short M.P., Ding Z.J., Zeng Z., Li J. // Sci. Rep. 2015. V. 5. № 1. P. 18130. https://doi.org/10.1038/srep18130
  20. Cerva H., Hobler G. // J. Electrochem. Soc. 1992. V. 139. № 12. P. 3631. https://doi.org/10.1149/1.2069134
  21. Huang J., Loeffler M., Muehle U., Moeller W., Mulders J.J.L., Kwakman L.F.Tz., Van Dorp W.F., Zschech E. // Ultramicroscopy. 2018. V. 184. P. 52. https://doi.org/10.1016/j.ultramic.2017.10.011
  22. Mayer J., Giannuzzi L.A., Kamino T., Michael J. // MRS Bull. 2007. V. 32. № 5. P. 400. https://doi.org/10.1557/mrs2007.63
  23. Eckstein W. Computer Simulation of Ion-Solid Interactions: Berlin–Heidelberg: Springer, 1991. 296 p. https://doi.org/10.1007/978-3-642-73513-4
  24. Mutzke A., Bandelow G., Schmid K. News in SDTrimSP Version 5.05, 2015. 46 p.
  25. Wilson W.D., Haggmark L.G., Biersack J.P. // Phys. Rev. B. 1977. V. 15. № 5. P. 2458. https://doi.org/10.1103/PhysRevB.15.2458
  26. Oen O.S., Robinson M.T. // Nucl. Instrum. Methods. 1976. V. 132. P. 647. https://doi.org/10.1016/0029-554X(76)90806-5
  27. Lindhard J., Scharff M. // Phys. Rev. 1961. V. 124. № 1. P. 128. https://doi.org/10.1103/PhysRev.124.128
  28. Süle P., Heinig K.-H. // J. Chem. Phys. 2009. V. 131. P. 204704. https://doi.org/10.1063/1.3264887
  29. Mutzke A., Eckstein W. // Nucl. Instrum. Methods Phys. Res. B. 2008. V. 266. № 6. P. 872. https://doi.org/10.1016/j.nimb.2008.01.053
  30. Wittmaack K. // Phys. Rev. B. 2003. V. 68. № 23. P. 235211. https://doi.org/10.1103/PhysRevB.68.235211

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Bright-field TEM images of silicon layers amorphized by xenon ions with energies of 5 (a) and 8 keV (c), with averaged normalized intensity profiles and their derivatives superimposed on them; intensity profiles (1) corresponding to the images and calculated normalized distributions of vacancy concentrations (2) and (3) (b), (d). Near the right edge of the images there are areas of the protective Pt + a-C layer; on the graphs, the middles of the transition regions between the crystal and the amorphous layer are marked by solid vertical lines, and the positions of the sample surfaces are marked by dashed lines.

Download (386KB)

Copyright (c) 2025 Russian Academy of Sciences