Action of a high-power ion beam of nanosecond duration on commercial AlN ceramics
- Authors: Kovivchak V.S.1
-
Affiliations:
- Omsk Scientific Center SB RAS, Institute of Radiophysics and Physical Electronics
- Issue: No 3 (2025)
- Pages: 57-61
- Section: Articles
- URL: https://j-morphology.com/1028-0960/article/view/687677
- DOI: https://doi.org/10.31857/S1028096025030095
- EDN: https://elibrary.ru/ELVBGW
- ID: 687677
Cite item
Abstract
The fracture and change in elemental composition of the surface layers of aluminium nitride ceramics under the action of a high-power ion beam of nanosecond duration have been studied. The spatial characteristics of surface fracture have been determined. The destruction occurs mainly along the boundaries of particles (crystallites) from which the ceramics is sintered. Complete removal of some of these particles from the surface layer is observed both after single and multiple irradiations with a current density of 150 A/cm2. The formation of hemispherical droplets of various sizes is detected both on the irradiated surface of the ceramics and on the surface after removal of the fracture fragment (after multiple irradiation). Depletion of the surface layer of the ceramics in nitrogen has been established. Possible mechanisms of the observed changes in the surface layer of the ceramics are discussed.
Full Text

About the authors
V. S. Kovivchak
Omsk Scientific Center SB RAS, Institute of Radiophysics and Physical Electronics
Author for correspondence.
Email: kvs_docent@mail.ru
Russian Federation, Omsk
References
- Anandkumar M., Trofimov E. // J. Alloys Compd. 2023. V. 960. P. 170690. http://doi/org/10.1016/j.jallcom.2023.170690
- Vaiani L., Boccaccio A., Uva A.E., Palumbo G., Piccininni A., Guglielmi P., Cantore S., Santacroce L., Charitos I.A., Ballini A. // J. Funct. Biomater. 2023. V. 14. P. 146. http://doi/org/10.3390/jfb14030146
- Nisar A., Hassan R., Agarwal A., Balani K. // Ceram. Int. 2022. V. 48. P. 8852. http://doi/org/10.1016/j.ceramint.2021.12.199
- Sokovkin S.Yu., Balezin M.E. // Nucl. Instrum. Methods Phys. Res. B. 2020. V. 978. P. 164466. http://doi/org/10.1016/j.nima.2020.164466
- Ebert J.N., Rheinheimer W. // Open Ceram. 2022. V. 11. P. 100280. http://doi/org/10.1016/j.oceram.2022.100280
- Lizcano M., Williams T.S., Shin E.-S.E., Santiago, D., Nguyen B. // Materials. 2022. V. 15. P. 8121. http://doi/org/10.3390/ma15228121
- Remnev G.E., Isakov I.F., Opekounov M.S. et al. // Surf. Coat. Technol. 1999. V. 114. P. 206. http://doi/org/10.1016/S0257-8972(99)00058-4
- Remnev G.E., Tarbokov V.A., Pavlov S.K. // Inorg. Mater. Appl. Res. 2022. V. 13. P. 62. http://doi/org/10.1134/S2075113322030327
- Uglov V.V., Remnev G.E., Kuleshov A.K., Astashinski V.M., Saltymakov M.S. // Surf. Coat. Technol. 2010. V. 204. P. 1952. http://doi/org/10.1016/j.surfcoat.2009.09.039
- Kovivchak V.S., Panova T.V., Burlakov R.B. // J. Surf. Invest. X-Ray, Synchrotron, Neutron Tech. 2008. V. 2. P. 200. http://doi/org/ 10.1134/S1027451008020079
- Kovivchak V.S., Panova T.V., Krivozubov O.V., Davletkil’deev N.A., Knyazev E.V. // J. Surf. Invest. X-Ray, Synchrotron, Neutron Tech. 2012. V. 6. P. 244. http://doi/org/10.1134/S1027451012030123
- Kovivchak V.S., Panova T.V. // J. Surf. Invest. X-Ray, Synchrotron, Neutron Tech. 2019. V. 13. P. 1252. http://doi/org/10.1134/S1027451019060363
- Liang G., Shen J., Zhang J. et al. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 409. P. 277. http://doi/org/10.1016/j.nimb.2017.04.048
- Shen J., Shahid I., Yu X. et al. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 413. P. 6. http://doi/org/10.1016/j.nimb.2017.09.031
- Romanov I.G., Tsareva I.N. // Tech. Phys. Lett. 2001. V. 27. P. 695. http://doi/org/10.1134/1.1398972
- Nakano H., Watari K., Hayashi H., Urabe K. // J. Am. Ceram. Soc. 2004. V. 85. P. 3093. http://doi/org/10.1111/j.1151-2916.2002.tb00587.x
- De Faoite D., Browne D.J., Chang-Díaz F.R. et al. // J. Mater. Sci. 2012. V. 47. P. 4211. http://doi/org/10.1007/s10853-011-6140-1
- Goldstein J.I., Newbury D.E., Echlin P. et al. Scanning Electron Microscopy and X-Ray Microanalysis. New York: Kluwer acad. /Plenum publ., 2003. 689 p.
- Ghyngazov S., Pavlov S., Kostenko V., Surzhikov A. // Nucl. Instrum. Methods Phys. Res. B. 2018. V. 434. P. 120. http://doi/org/10.1016/j.nimb.2018.08.037
- Kostenko V., Pavlov S., Nikolaeva S. // IOP Conf. Ser.: Mater. Sci. Eng. 2018. V. 289. P. 012019. http://doi/org/10.1088/1757-899X/289/1/012019
- Ghyngazov S.А., Boltueva V.А. // Ceram. Int. 2023. V. 49. P. 37061. http://doi/org/10.1016/j.ceramint.2023.09.099
- Ghyngazov S., Kostenko V., Shevelev S., Lysenko E., Surzhikov A. // Nucl. Instrum. Methods Phys. Res. B. 2020. V. 464. P. 89. http://doi/org/10.1016/j.nimb.2019.12.013
- Zhang S., Yu X., Zhang J. et al. // Vacuum. 2021. V. 187. P. 110154. http://doi/org/10.1016/j.vacuum.2021.110154
Supplementary files
