Action of a high-power ion beam of nanosecond duration on commercial AlN ceramics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The fracture and change in elemental composition of the surface layers of aluminium nitride ceramics under the action of a high-power ion beam of nanosecond duration have been studied. The spatial characteristics of surface fracture have been determined. The destruction occurs mainly along the boundaries of particles (crystallites) from which the ceramics is sintered. Complete removal of some of these particles from the surface layer is observed both after single and multiple irradiations with a current density of 150 A/cm2. The formation of hemispherical droplets of various sizes is detected both on the irradiated surface of the ceramics and on the surface after removal of the fracture fragment (after multiple irradiation). Depletion of the surface layer of the ceramics in nitrogen has been established. Possible mechanisms of the observed changes in the surface layer of the ceramics are discussed.

Full Text

Restricted Access

About the authors

V. S. Kovivchak

Omsk Scientific Center SB RAS, Institute of Radiophysics and Physical Electronics

Author for correspondence.
Email: kvs_docent@mail.ru
Russian Federation, Omsk

References

  1. Anandkumar M., Trofimov E. // J. Alloys Compd. 2023. V. 960. P. 170690. http://doi/org/10.1016/j.jallcom.2023.170690
  2. Vaiani L., Boccaccio A., Uva A.E., Palumbo G., Piccininni A., Guglielmi P., Cantore S., Santacroce L., Charitos I.A., Ballini A. // J. Funct. Biomater. 2023. V. 14. P. 146. http://doi/org/10.3390/jfb14030146
  3. Nisar A., Hassan R., Agarwal A., Balani K. // Ceram. Int. 2022. V. 48. P. 8852. http://doi/org/10.1016/j.ceramint.2021.12.199
  4. Sokovkin S.Yu., Balezin M.E. // Nucl. Instrum. Methods Phys. Res. B. 2020. V. 978. P. 164466. http://doi/org/10.1016/j.nima.2020.164466
  5. Ebert J.N., Rheinheimer W. // Open Ceram. 2022. V. 11. P. 100280. http://doi/org/10.1016/j.oceram.2022.100280
  6. Lizcano M., Williams T.S., Shin E.-S.E., Santiago, D., Nguyen B. // Materials. 2022. V. 15. P. 8121. http://doi/org/10.3390/ma15228121
  7. Remnev G.E., Isakov I.F., Opekounov M.S. et al. // Surf. Coat. Technol. 1999. V. 114. P. 206. http://doi/org/10.1016/S0257-8972(99)00058-4
  8. Remnev G.E., Tarbokov V.A., Pavlov S.K. // Inorg. Mater. Appl. Res. 2022. V. 13. P. 62. http://doi/org/10.1134/S2075113322030327
  9. Uglov V.V., Remnev G.E., Kuleshov A.K., Astashinski V.M., Saltymakov M.S. // Surf. Coat. Technol. 2010. V. 204. P. 1952. http://doi/org/10.1016/j.surfcoat.2009.09.039
  10. Kovivchak V.S., Panova T.V., Burlakov R.B. // J. Surf. Invest. X-Ray, Synchrotron, Neutron Tech. 2008. V. 2. P. 200. http://doi/org/ 10.1134/S1027451008020079
  11. Kovivchak V.S., Panova T.V., Krivozubov O.V., Davletkil’deev N.A., Knyazev E.V. // J. Surf. Invest. X-Ray, Synchrotron, Neutron Tech. 2012. V. 6. P. 244. http://doi/org/10.1134/S1027451012030123
  12. Kovivchak V.S., Panova T.V. // J. Surf. Invest. X-Ray, Synchrotron, Neutron Tech. 2019. V. 13. P. 1252. http://doi/org/10.1134/S1027451019060363
  13. Liang G., Shen J., Zhang J. et al. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 409. P. 277. http://doi/org/10.1016/j.nimb.2017.04.048
  14. Shen J., Shahid I., Yu X. et al. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 413. P. 6. http://doi/org/10.1016/j.nimb.2017.09.031
  15. Romanov I.G., Tsareva I.N. // Tech. Phys. Lett. 2001. V. 27. P. 695. http://doi/org/10.1134/1.1398972
  16. Nakano H., Watari K., Hayashi H., Urabe K. // J. Am. Ceram. Soc. 2004. V. 85. P. 3093. http://doi/org/10.1111/j.1151-2916.2002.tb00587.x
  17. De Faoite D., Browne D.J., Chang-Díaz F.R. et al. // J. Mater. Sci. 2012. V. 47. P. 4211. http://doi/org/10.1007/s10853-011-6140-1
  18. Goldstein J.I., Newbury D.E., Echlin P. et al. Scanning Electron Microscopy and X-Ray Microanalysis. New York: Kluwer acad. /Plenum publ., 2003. 689 p.
  19. Ghyngazov S., Pavlov S., Kostenko V., Surzhikov A. // Nucl. Instrum. Methods Phys. Res. B. 2018. V. 434. P. 120. http://doi/org/10.1016/j.nimb.2018.08.037
  20. Kostenko V., Pavlov S., Nikolaeva S. // IOP Conf. Ser.: Mater. Sci. Eng. 2018. V. 289. P. 012019. http://doi/org/10.1088/1757-899X/289/1/012019
  21. Ghyngazov S.А., Boltueva V.А. // Ceram. Int. 2023. V. 49. P. 37061. http://doi/org/10.1016/j.ceramint.2023.09.099
  22. Ghyngazov S., Kostenko V., Shevelev S., Lysenko E., Surzhikov A. // Nucl. Instrum. Methods Phys. Res. B. 2020. V. 464. P. 89. http://doi/org/10.1016/j.nimb.2019.12.013
  23. Zhang S., Yu X., Zhang J. et al. // Vacuum. 2021. V. 187. P. 110154. http://doi/org/10.1016/j.vacuum.2021.110154

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM image of the original surface of AlN ceramics (a) and irradiated with one (b) and three (c, d) MIP pulses with a current density of 150 A/cm2.

Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences