On the usage of underwater plasma and magnetopulse processing of FeSiBNb amorphous alloy ribbons

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the methods of scanning electron, optical and scanning probe microscopy, the surface structure of unannealed amorphous electrotechnical alloys — foils of the composition Fe73(SiBNb)27 and alloys of the same composition, but with the addition of 1% Cu, obtained by the method of ultra-fast cooling by spraying the melt on a rotating copper drum was studied. On the free surfaces of the foils not adjacent to the rotating drum, microformations, irregularities with “micropoints” with characteristic sizes of less than 0.5 microns were found, which during the operation of electrotechnical products can initiate the presence of electric field gradients on the surface of the foil. The effect of underwater plasma on the studied materials did not lead to a change in their magnetic characteristics. For Fe73(SiBNb)27 foil with the addition of 1% Cu, treated with 10 and 40 pulses of a weak magnetic field (10–100 kA/m) of low frequency (10–20 Hz), magnetic contrast was detected: in phase contrast mode after exposure to 40 pulses of a magnetic field, triangular figures associated with the appearance of closing prismatic domains, the width of the domain walls of which is approximately 1–2 μm, and after exposure to 10 pulses of a magnetic field — a magnetic contrast of a specific shape, which was observed over the entire studied area of the foil. Also, for Fe73(SiBNb)27 foil with the addition of 1% Cu, there was a weak dependence of the specific magnetization on the number of magnetic pulses: an increase in the number of pulses led to a slight decrease in the specific magnetization.

Full Text

Restricted Access

About the authors

M. N. Shipko

Lenin Ivanovo State Power Engineering University

Author for correspondence.
Email: michael-1946@mail.ru
Russian Federation, Ivanovo

M. A. Stepovich

Tsiolkovsky Kaluga State University

Email: michael-1946@mail.ru
Russian Federation, Kaluga

A. V. Khlustova

G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: michael-1946@mail.ru
Russian Federation, Ivanovo

N. A. Sirotkin

G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: michael-1946@mail.ru
Russian Federation, Ivanovo

T. P. Kaminskaya

Lomonosov Moscow State University

Email: michael-1946@mail.ru
Russian Federation, Moscow

A. V. Stulov

LLC “Research and Production Complex “Avtopribor”

Email: michael-1946@mail.ru
Russian Federation, Vladimir

E. S. Savchenko

National Research Technological University “MISIS”

Email: michael-1946@mail.ru
Russian Federation, Moscow

References

  1. Глезер А.М., Молотилов Б.В. Структура и механические свойства аморфных сплавов. М.: Металлургия, 1992. 207 с.
  2. Ильин Н.В., Комогорцев В.С., Крайнова Г.С. Иванов В.А., Ткаченко И.А., Ткачев В.В., Плотников В.С., Исхаков Р.С. // Известия РАН. Сер. физ. 2021. Т. 85. № 9. С. 1234. https://www.doi.org/10.31857/S0367676521090143
  3. Aksenov O.I., Abrosimova G.E., Aronin A.S., Orlova N.N., Churyukanova M.N., Zhukova V.A., Zhukov A.P. // J. Appl. Phys. 2017. V. 122. Iss. 23. P. 235103. https://doi.org/10.1063/1.5008957
  4. Alshits V.I., Darinskaya E.V., Koldaeva M.V., Petrzhik E.A. // Crystallography Rep. 2003. V. 48. № 5. P. 768.
  5. Alshits V.I., Darinskaya E.V., Koldaeva M.V., Petrzhik E.A. // JETP Lett. 2016. V. 104. № 5. P. 353. https://doi.org/10.1134/S0021364016170045
  6. Shipko M.N., Tikhonov A.I., Stepovich M.A., Viryus A.A., Kaminskaya T.P., Korovushkin V.V., Savchenko E.S., Eremin I.V. // Bull. RAS: Phys. 2018. V. 82. № 8. P. 988. https://www.doi.org/10.3103/S1062873818080373
  7. Koldaeva M.V., Alshits V.I. // AIP Adv. 2024. V. 14. № 1. P. 015015. https://doi.org/10.1063/5.0177619
  8. Viryus A.A., Kaminskaya T.P., Shipko M.N., Bakhteeva N.D., Korovushkin V.V., Savchenko A.G., Stepovich M.A., Savchenko E.S., Todorova E.V. // IOP Conf. Ser.: Mater. Sci. Engineer. 2020. V. 848. P. 012085. https://doi.org/10.1088/1757-899X/848/1/012085
  9. Shipko M.N., Sibirev A.L., Stepovich M.A., Tikhonov A.I., Savchenko E.V. // J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2021. V. 15. № 5. P. 970. https://www.doi.org/10.1134/S1027451021050190
  10. Shipko M.N., Kaminskaya T.P., Stepovich M.A., Viryus A.A., Tikhonov A.I. // J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2023. V. 17. № 1. P. 186. https://www.doi.org/10.1134/S1027451023010378
  11. Kaminskaya T.P., Shipko M.N., Stepovich M.A., Tikhonov A.I., Viryus A.A., Popov V.V. // Bull. RAS: Physics. 2023. V. 87. № 10. P. 1544. https://www.doi.org/10.3103/S1062873823703665
  12. Khlyustova A.V., Shipko M.N., Sirotkin N.A., Agafonov A.V., Stepovich M.A. // Bull. RAS: Physics. 2022. V. 86. № 5. P. 509. https://doi.org/10.3103/S1062873822050100
  13. Khlyustova A.V., Sirotkin N.A., Agafonov A.V., Stepovich M.A., Shipko M.N. // J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2023. V. 17. № 1. P. 221. https://doi.org/10.1134/S1027451023010305
  14. Gupta, P., Gupta A., Shukla A., Ganguli Tapas, Sinha A.K., Principi G., Maddalena A. // J. Appl. Phys. 2011. V. 110. Iss. 3. P. 033537. https://doi.org/10.1063/1.3622325
  15. Миронов В.Л. Основы сканирующей зондовой микроскопии. Нижний Новгород: Институт физики микроструктур РАН, 2004. 114 с.
  16. Ernst M., Hug H.J., Roland B. Scanning Probe Microscopy. The Lab on a Tip. Berlin, Heidelberg: Springer, 2004. 210 p.
  17. Зайкова В.А., Старцева И.Е., Филиппов Б.Н. Доменная структура и магнитные свойства электротехнических сталей. М.: Наука, 1992. 272 с.
  18. Вонсовский С.В. Магнетизм: Учебное пособие. М: Наука, 1984. 208 с.
  19. Hubert A., Schäfer R. Magnetic Domains. The Analysis of Magnetic Microstructures. Berlin, Heidelberg: Springer-Verlag, 1998, 686 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Image of a section of the free surface of a ribbon amorphous Fe–Si–B–Nb alloy obtained using atomic force microscopy: in amplitude contrast mode in three-dimensional (a) and two-dimensional (b) form; in phase contrast mode in two-dimensional form (c).

Download (375KB)
3. Fig. 2. Image of a section of the free surface of a ribbon amorphous Fe–Si–B–Nb alloy after exposure to underwater plasma, obtained using atomic force microscopy in amplitude (a) and phase (b) contrast modes.

Download (316KB)
4. Fig. 3. MFM image of a section of the free surface of a ribbon amorphous alloy Fe73(SiBNb)27 with the addition of 1% Cu after magnetic pulse treatment with 40 magnetic field pulses, obtained in the amplitude (a) and phase (b) contrast mode.

Download (262KB)
5. Fig. 4. MFM image of a section of the free surface of a ribbon amorphous alloy Fe73(SiBNb)27 with the addition of 1% Cu after magnetic pulse treatment with 10 magnetic field pulses, obtained in the amplitude (a) and phase (b) contrast mode.

Download (288KB)

Copyright (c) 2025 Russian Academy of Sciences