Diversity of different atomic groups in the Cu-NbTi composite under the influence of batch hydroextrusio

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Using X-ray diffraction analysis, the patterns of changes in the atomic structure in Cu-NbTi composite materials were studied at P = 50 atm, with a moving Poisson rotation speed of 0.5 rpm. and rotation speed n = (0–5) rpm. as a result of the action of batch hydroextrusion on the samples. It was found that the samples contain different-sized structural formations with long-range, mesoscopic and short-range atomic order. It is shown that the non-monotonic change in atomic order, with an increase in the number of revolutions of rotation of the mobile Poisson, is due to the structural phase transition of order-disorder into a state with the formation of different-sized atomic groups with long-range, mesoscopic and short-range atomic order, in which the manifestation of new interatomic interaction forces characterizing the formation of intermetallic clusters of atomic groups. It was found that already in the initial state after compacting the samples, the presence of clusters in the copper matrix phase containing niobium and titanium is observed, which characterizes an increase in heterophase in the sample system under study. The result is a homogeneous finely dispersed material containing uniformly distributed multi-scale fractions of metallic and intermetallic phases in the form of crystalline, mesoscopic and amorphous fractions. This structure exhibits increased strength, which is noticeable in the form of an increase in microhardness from 1.56 GPa to 4.15 GPa.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Z. Samoylenko

Federal state budgetary institution “Donetsk Institute of Physics and Technology named after A.A. Galkin”

Хат алмасуға жауапты Автор.
Email: yulduz19.77@mail.ru
Ресей, Donetsk

N. Ivakhnenko

Federal state budgetary institution “Donetsk Institute of Physics and Technology named after A.A. Galkin”; Federal State Budgetary Educational Institution of Higher Education “Russian State Agrarian University Moscow Agricultural Academy named after K.A. Timiryazev”

Email: yulduz19.77@mail.ru
Ресей, Donetsk; Moscow

E. Pushenko

Federal state budgetary institution “Donetsk Institute of Physics and Technology named after A.A. Galkin”

Email: yulduz19.77@mail.ru
Ресей, Donetsk

M. Badekin

Federal State Budgetary Educational Institution of Higher Education “Russian State Agrarian University Moscow Agricultural Academy named after K.A. Timiryazev”; Federal State Budgetary Educational Institution of Higher Education “Donetsk State University”

Email: korund2002@list.ru
Ресей, Moscow; Donetsk

N. Chernyavskaya

Federal state budgetary institution “Donetsk Institute of Physics and Technology named after A.A. Galkin”

Email: korund2002@list.ru
Ресей, Donetsk

Әдебиет тізімі

  1. Cvijoviс-Alagiс I., Laketiс S., Momciloviс M., Ciganoviс J., Bajat J., Kojiс V. // Acta Metall. 2024. https://doi/org/10.1007/s40195-024-01705-0
  2. Panigrahi A., Sulkowski B., Waitz Th., Ozaltin K., Chrominski W., Pukenas A., Horky J., Lewandowska M., Skrotzki W., Zehetbauer M. // Journal of the Mechanical Behavior of Biomedical Materials. 2016. V. 62. P. 93-105. https://doi/org/10.1016/j.jmbbm.2016.04.042
  3. Campos-Quiros A., Cubero-Sesin J.M., Edalati K. // Materials Science and Engineering: A. 2020. V. 795. P. 139972. https://doi/org/10.1016/j.msea.2020.139972
  4. Pillmeier S., Pippan R., Eckert J., Hohenwarter A. // Materials Science and Engineering: A. 2023. V. 871. P. 144868. https://doi/org/10.1016/j.msea.2023.144868
  5. Korneva A., Straumal B., Kilmametov A., Kopacz S., Szczerba M., Gondek Ł., Cios G., Lityńska-Dobrzyńska L., Chulist R. // Materials Science and Engineering: A. 2022. V. 857. P. 144096. https://doi/org/10.1016/j.msea.2022.144096
  6. Volker B., Maier-Kiener V., Werbach K., Müller T., Pilz S., Calin M., Eckert J., Hohenwarter A. // Materials & Design. 2019. V. 179. P. 107864. https://doi/org/10.1016/j.matdes.2019.107864
  7. Ghosh S., Singh A.K., Mula S. // Materials & Design. 2016. V. 179. P. 47-57. https://doi/org/10.1016/j.matdes.2016.03.107
  8. Delshadmanesh M., Khatibi G., Zare Ghomsheh M., Lederer M., Zehetbauer M., Danninger H. // Materials Science and Engineering: A. 2017. V. 706. P. 83-94. https://doi/org/10.1016/j.msea.2017.08.098
  9. Hu N., Xie L., Liao Q., Gao A., Zheng Y., Pan H., Tong L., Yang D., Gao N., Starink M.J., Chu P.K., Wang H. // Acta Biomaterialia. 2021. V. 126. P. 524-536. https://doi/org/10.1016/j.actbio.2021.02.045
  10. Cvijovic-Alagic I., Laketic S., Bajat J., Hohenwarter A., Rakin M. // Surface and Coatings Technology. 2021. V. 423. P. 127609. https://doi/org/10.1016/j.surfcoat.2021.127609
  11. Korneva A., Straumal B., Gornakova A., Kilmametov A., Gondek Ł., Lityńska-Dobrzyńska L., Chulist R., Pomorska M., Zięba P. // Materials. 2022. V. 12. № 15. P. 4136. https://doi/org/10.3390/ma15124136
  12. Edalati K., Daio T., Lee S., Horita Z., Nishizaki T., Akune T., Nojima T., Sasaki T. // Acta Materialia. 2014. V. 80. P. 149. https://doi/org/10.1016/j.actamat.2014.07.065
  13. Zhang Sh., Liu Sh., Wan J., Liu W. // Materials Science and Engineering: A. 2020. V. 772. P. 138788. https://doi/org/10.1016/j.msea.2019.138788
  14. Hu J., Du L.-X., Wang J.-J. // Materials Science and Engineering: A. 2012. V. 554. P. 79. https://doi/org/10.1016/j.msea.2012.06.018
  15. Chen Ch.Y., Chen Ch.C. Yang J.R. // Materials Characterization. 2014. V. 88. P.69. https://doi/org/10.1016/j.matchar.2013.11.016.
  16. Samoilenko Z.A., Ivakhnenko N.N., Pushenko E.I., Belousov N.N., Chernyavskaya N.V., Badekin M Yu. // Inorganic Materials. 2023. V. 59. № 9. P. 932–939. https://doi/org/10.1134/s0020168523090121
  17. Жданов Г.С., Илюшин А.С., Никитина С.В. Дифракционный и резонансный структурный анализ М. Наука, 1980. 256 с.
  18. Самойленко З.А., Ивахненко Н.Н., Пащенко В.П., Копаев О.В., Остафийчук Б.К., Гасюк И.М. // Журнал технической физики. 2002. Т. 72. № 3. С. 83.
  19. Глезер А.М., Варюхин В.Н., Томчук А.А., Малеева Н.А. // Доклады Академии Наук. Техническая физика. 2014. Т. 457. № 5. С. 535. https://doi/org/10.7868/S0869565214230108
  20. Edalati K., Horita Z. // Materials Science and Engineering A. 2016. V. 652. P. 325. https://doi/org/https:doi.org/10.1016/j.msea.2015.11.074
  21. Белоусов Н.А. // Физика и техника высоких давлений. 2006. Т. 16. № 4. С. 90.
  22. Самойленко З.А. Кластерообразование в структурах с нарушенным дальним порядком: Автореф. дис. на соискание ученой степени доктора физ.-мат. наук: 01.04.07. Донецк: ДонФТИ, 1998.
  23. Архаров В.И., Мархасин Е.С., Самойленко З.А. // Физика металлов и металловедение. 1970. Т. 70. № 5. С. 1102.
  24. Кривоглаз М.А. // Электронная структура и электронные свойства металлов и сплавов. Киев: Наукова думка, 1988. 237 с.
  25. Матросов Н.И., Дугадко А.Б., Павловская Е.А., Сенникова Л.Ф., Шевченко Б.А.// Физика и техника высоких давлений. 1999. Т. 9. № 4. С. 63.
  26. Glezer А.М., Timshin I.A., Shchetinin I.V., Gorshenkov M.V., Sundeev R.V., Ezhova A.G. // Journal of Alloys and Compounds. 2018. V. 744. P. 791. https://doi/org/10.1016/j.jallcom.2018.02.124

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Geometry of the end surface of nanofibrous Cu–NbTi composite.

Жүктеу (134KB)
3. Fig. 2. Diffraction patterns of the Cu–NbTi composite at P = 50 atm, a movable Poisson rotation speed of 0.5 rpm and a rotation speed of n = (0–5) rev.: (a) — n = 0 rev., (b) — n = 0.5 rev., (c) — n = 2 rev., (d) — n = 5 rev.

Жүктеу (422KB)
4. Fig. 3. Dependence of the concentration of crystalline (Ccr) and mesoscopic (Cmez) clusters on the number of revolutions of the moving Poisson.

Жүктеу (56KB)
5. Fig. 4. Change in microhardness of the Cu–NbTi composite depending on the number of revolutions of the movable Poisson.

Жүктеу (42KB)
6. Fig. 5. Change in the intensities of coherent (Icoh) and incoherent (Iincoh) scattering from the number of revolutions of the moving Poisson.

Жүктеу (56KB)

© Russian Academy of Sciences, 2025