Diversity of different atomic groups in the Cu-NbTi composite under the influence of batch hydroextrusio

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using X-ray diffraction analysis, the patterns of changes in the atomic structure in Cu-NbTi composite materials were studied at P = 50 atm, with a moving Poisson rotation speed of 0.5 rpm. and rotation speed n = (0–5) rpm. as a result of the action of batch hydroextrusion on the samples. It was found that the samples contain different-sized structural formations with long-range, mesoscopic and short-range atomic order. It is shown that the non-monotonic change in atomic order, with an increase in the number of revolutions of rotation of the mobile Poisson, is due to the structural phase transition of order-disorder into a state with the formation of different-sized atomic groups with long-range, mesoscopic and short-range atomic order, in which the manifestation of new interatomic interaction forces characterizing the formation of intermetallic clusters of atomic groups. It was found that already in the initial state after compacting the samples, the presence of clusters in the copper matrix phase containing niobium and titanium is observed, which characterizes an increase in heterophase in the sample system under study. The result is a homogeneous finely dispersed material containing uniformly distributed multi-scale fractions of metallic and intermetallic phases in the form of crystalline, mesoscopic and amorphous fractions. This structure exhibits increased strength, which is noticeable in the form of an increase in microhardness from 1.56 GPa to 4.15 GPa.

Full Text

Restricted Access

About the authors

Z. A. Samoylenko

Federal state budgetary institution “Donetsk Institute of Physics and Technology named after A.A. Galkin”

Author for correspondence.
Email: yulduz19.77@mail.ru
Russian Federation, Donetsk

N. N. Ivakhnenko

Federal state budgetary institution “Donetsk Institute of Physics and Technology named after A.A. Galkin”; Federal State Budgetary Educational Institution of Higher Education “Russian State Agrarian University Moscow Agricultural Academy named after K.A. Timiryazev”

Email: yulduz19.77@mail.ru
Russian Federation, Donetsk; Moscow

E. I. Pushenko

Federal state budgetary institution “Donetsk Institute of Physics and Technology named after A.A. Galkin”

Email: yulduz19.77@mail.ru
Russian Federation, Donetsk

M. Yu. Badekin

Federal State Budgetary Educational Institution of Higher Education “Russian State Agrarian University Moscow Agricultural Academy named after K.A. Timiryazev”; Federal State Budgetary Educational Institution of Higher Education “Donetsk State University”

Email: korund2002@list.ru
Russian Federation, Moscow; Donetsk

N. V. Chernyavskaya

Federal state budgetary institution “Donetsk Institute of Physics and Technology named after A.A. Galkin”

Email: korund2002@list.ru
Russian Federation, Donetsk

References

  1. Cvijoviс-Alagiс I., Laketiс S., Momciloviс M., Ciganoviс J., Bajat J., Kojiс V. // Acta Metall. 2024. https://doi/org/10.1007/s40195-024-01705-0
  2. Panigrahi A., Sulkowski B., Waitz Th., Ozaltin K., Chrominski W., Pukenas A., Horky J., Lewandowska M., Skrotzki W., Zehetbauer M. // Journal of the Mechanical Behavior of Biomedical Materials. 2016. V. 62. P. 93-105. https://doi/org/10.1016/j.jmbbm.2016.04.042
  3. Campos-Quiros A., Cubero-Sesin J.M., Edalati K. // Materials Science and Engineering: A. 2020. V. 795. P. 139972. https://doi/org/10.1016/j.msea.2020.139972
  4. Pillmeier S., Pippan R., Eckert J., Hohenwarter A. // Materials Science and Engineering: A. 2023. V. 871. P. 144868. https://doi/org/10.1016/j.msea.2023.144868
  5. Korneva A., Straumal B., Kilmametov A., Kopacz S., Szczerba M., Gondek Ł., Cios G., Lityńska-Dobrzyńska L., Chulist R. // Materials Science and Engineering: A. 2022. V. 857. P. 144096. https://doi/org/10.1016/j.msea.2022.144096
  6. Volker B., Maier-Kiener V., Werbach K., Müller T., Pilz S., Calin M., Eckert J., Hohenwarter A. // Materials & Design. 2019. V. 179. P. 107864. https://doi/org/10.1016/j.matdes.2019.107864
  7. Ghosh S., Singh A.K., Mula S. // Materials & Design. 2016. V. 179. P. 47-57. https://doi/org/10.1016/j.matdes.2016.03.107
  8. Delshadmanesh M., Khatibi G., Zare Ghomsheh M., Lederer M., Zehetbauer M., Danninger H. // Materials Science and Engineering: A. 2017. V. 706. P. 83-94. https://doi/org/10.1016/j.msea.2017.08.098
  9. Hu N., Xie L., Liao Q., Gao A., Zheng Y., Pan H., Tong L., Yang D., Gao N., Starink M.J., Chu P.K., Wang H. // Acta Biomaterialia. 2021. V. 126. P. 524-536. https://doi/org/10.1016/j.actbio.2021.02.045
  10. Cvijovic-Alagic I., Laketic S., Bajat J., Hohenwarter A., Rakin M. // Surface and Coatings Technology. 2021. V. 423. P. 127609. https://doi/org/10.1016/j.surfcoat.2021.127609
  11. Korneva A., Straumal B., Gornakova A., Kilmametov A., Gondek Ł., Lityńska-Dobrzyńska L., Chulist R., Pomorska M., Zięba P. // Materials. 2022. V. 12. № 15. P. 4136. https://doi/org/10.3390/ma15124136
  12. Edalati K., Daio T., Lee S., Horita Z., Nishizaki T., Akune T., Nojima T., Sasaki T. // Acta Materialia. 2014. V. 80. P. 149. https://doi/org/10.1016/j.actamat.2014.07.065
  13. Zhang Sh., Liu Sh., Wan J., Liu W. // Materials Science and Engineering: A. 2020. V. 772. P. 138788. https://doi/org/10.1016/j.msea.2019.138788
  14. Hu J., Du L.-X., Wang J.-J. // Materials Science and Engineering: A. 2012. V. 554. P. 79. https://doi/org/10.1016/j.msea.2012.06.018
  15. Chen Ch.Y., Chen Ch.C. Yang J.R. // Materials Characterization. 2014. V. 88. P.69. https://doi/org/10.1016/j.matchar.2013.11.016.
  16. Samoilenko Z.A., Ivakhnenko N.N., Pushenko E.I., Belousov N.N., Chernyavskaya N.V., Badekin M Yu. // Inorganic Materials. 2023. V. 59. № 9. P. 932–939. https://doi/org/10.1134/s0020168523090121
  17. Жданов Г.С., Илюшин А.С., Никитина С.В. Дифракционный и резонансный структурный анализ М. Наука, 1980. 256 с.
  18. Самойленко З.А., Ивахненко Н.Н., Пащенко В.П., Копаев О.В., Остафийчук Б.К., Гасюк И.М. // Журнал технической физики. 2002. Т. 72. № 3. С. 83.
  19. Глезер А.М., Варюхин В.Н., Томчук А.А., Малеева Н.А. // Доклады Академии Наук. Техническая физика. 2014. Т. 457. № 5. С. 535. https://doi/org/10.7868/S0869565214230108
  20. Edalati K., Horita Z. // Materials Science and Engineering A. 2016. V. 652. P. 325. https://doi/org/https:doi.org/10.1016/j.msea.2015.11.074
  21. Белоусов Н.А. // Физика и техника высоких давлений. 2006. Т. 16. № 4. С. 90.
  22. Самойленко З.А. Кластерообразование в структурах с нарушенным дальним порядком: Автореф. дис. на соискание ученой степени доктора физ.-мат. наук: 01.04.07. Донецк: ДонФТИ, 1998.
  23. Архаров В.И., Мархасин Е.С., Самойленко З.А. // Физика металлов и металловедение. 1970. Т. 70. № 5. С. 1102.
  24. Кривоглаз М.А. // Электронная структура и электронные свойства металлов и сплавов. Киев: Наукова думка, 1988. 237 с.
  25. Матросов Н.И., Дугадко А.Б., Павловская Е.А., Сенникова Л.Ф., Шевченко Б.А.// Физика и техника высоких давлений. 1999. Т. 9. № 4. С. 63.
  26. Glezer А.М., Timshin I.A., Shchetinin I.V., Gorshenkov M.V., Sundeev R.V., Ezhova A.G. // Journal of Alloys and Compounds. 2018. V. 744. P. 791. https://doi/org/10.1016/j.jallcom.2018.02.124

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geometry of the end surface of nanofibrous Cu–NbTi composite.

Download (134KB)
3. Fig. 2. Diffraction patterns of the Cu–NbTi composite at P = 50 atm, a movable Poisson rotation speed of 0.5 rpm and a rotation speed of n = (0–5) rev.: (a) — n = 0 rev., (b) — n = 0.5 rev., (c) — n = 2 rev., (d) — n = 5 rev.

Download (422KB)
4. Fig. 3. Dependence of the concentration of crystalline (Ccr) and mesoscopic (Cmez) clusters on the number of revolutions of the moving Poisson.

Download (56KB)
5. Fig. 4. Change in microhardness of the Cu–NbTi composite depending on the number of revolutions of the movable Poisson.

Download (42KB)
6. Fig. 5. Change in the intensities of coherent (Icoh) and incoherent (Iincoh) scattering from the number of revolutions of the moving Poisson.

Download (56KB)

Copyright (c) 2025 Russian Academy of Sciences