Investigation of elastic light-emitting diode based on CsPbBr3 perovskite film, crystallized on a gallium phosphide nanowires array

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Recently, there has been rapid development of technologies for creating flexible and stretchable optoelectronic devices. A promising material in terms of fundamental properties is the inorganic halide perovskite CsPbBr3, whose electroluminescence brightness can reach 45.000 cd/m2. However, the most common thin-film technology of perovskite-based devices cannot solve a number of significant problems: ensuring the stability of the perovskite to the environment, creating tensile-resistant contacts, ensuring efficient injection of carriers into the electroluminescent layer, etc. To solve these problems, the authors developed a new device architecture based on a distributed electrode, which uses an array of whisker nanocrystals embedded in the light-emitting layer, thus solving the fundamental problem of the short lifetime of CsPbBr3 carriers. The device is enclosed in a special silicone polymer — a transparent inert flexible and stretchable matrix that protects the CsPbBr3 perovskite from environmental conditions and maintains the orientation of the arrays of whisker nanocrystals. 90% transparent single-walled carbon nanotubes, which have a high tensile strength and low electrical resistance, were used as an electrode providing lateral transport of carriers. Thus, a flexible device with high electroluminescence efficiency was obtained.

全文:

受限制的访问

作者简介

A. Yakubova

Alferov Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: yakubova.nastya@bk.ru
俄罗斯联邦, St. Petersburg

F. Kochetkov

Alferov Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences

Email: yakubova.nastya@bk.ru
俄罗斯联邦, St. Petersburg

V. Mastalieva

Alferov Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences

Email: yakubova.nastya@bk.ru
俄罗斯联邦, St. Petersburg

A. Goltaev

Alferov Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences

Email: yakubova.nastya@bk.ru
俄罗斯联邦, St. Petersburg

V. Neplokh

Alferov Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences

Email: yakubova.nastya@bk.ru
俄罗斯联邦, St. Petersburg

D. Mitin

Alferov Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences

Email: yakubova.nastya@bk.ru
俄罗斯联邦, St. Petersburg

I. Mukhin

Alferov Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences; Peter the Great St. Petersburg Polytechnic University

Email: yakubova.nastya@bk.ru
俄罗斯联邦, St. Petersburg; St. Petersburg

参考

  1. Corzo D., Tostado-Blázquez G., Baran D. // Frontiers in Electronics. 2020. V. 1. https://doi.org/10.3389/felec.2020.594003
  2. Song Y.M., Xie Y., Malyarchuk V., Xiao J., Jung I., Choi K.-J., Liu Z., Park H., Lu C., Kim R.-H., Li R., Crozier K.B., Huang Y., Rogers J.A. // Nature. 2013. V. 497. Iss. 7447. P. 95. https://doi.org/10.1038/nature12083
  3. Park S.-I., Xiong Y., Kim R.-H., Elvikis P., Meitl M., Kim D.-H., Wu J., Yoon J., Yu C.-J., Liu Z., Huang Y., Hwang K., Ferreira P., Li X., Choquette K., Rogers J.A. // Science. 2009. V. 325. Iss. 5943. P. 977. https://doi.org/10.1126/science.1175690
  4. Amruth C., Luszczynska B., Rekab W., Szymanski M.Z., Ulanski J. // Polymers. 2020. V. 13. Iss. 1. P. 80. https://doi.org/10.3390/polym13010080
  5. Gustafsson G., Cao Y., Treacy G.M., Klavetter F., Colaneri N., Heeger A. // Nature. 1992. V. 357. Iss. 6378. P. 477. https://doi.org/10.1038/357477a0
  6. Geffroy B., le Roy Ph., Prat Ch. // Polymer Int. 2006. V. 55. Iss. 6. P. 572. https://doi.org/10.1002/pi.1974
  7. Tankelevičiūtė E., Samuel I.D.W., Zysman-Colman E. // J. Phys. Chem. Lett. 2024. V. 15. Iss. 4. P. 1034. https://doi.org/10.1021/acs.jpclett.3c03317
  8. Pietryga J.M., Park Y.-S., Lim J., Fidler A.F., Bae W.K., Brovelli S., Klimov V.I. // Chem. Rev. 2016. V. 116. Iss. 18. P. 10513. https://doi.org/10.1021/acs.chemrev.6b00169
  9. Zhang J., Hodes G., Jin Zh., Liu Sh. // J. German Chem. Soc. 2024. V. 58. Iss. 44. P. 15596. https://doi.org/10.1002/anie.201901081
  10. Song J., Li J., Li X., Xu L., Dong Y., Zeng H. // Adv. Mater. 2015. V. 27. Iss. 44. P. 7162. https://doi.org/10.1002/adma.201502567
  11. Lu M., Zhang Y., Wang S., Guo J., Yu W.W., Rogach A.L. // Adv. Funct. Mater. 2019. V. 29. Iss. 30. P. 1902008. https://doi.org/10.1002/adfm.201902008
  12. Liashenko T.G., Cherotchenko E.D., Pushkarev A.P., Pakštas V., Naujokaitis A., Khubezhov S.A., Polozkov R.G., Agapev K.B., Zakhidov A.A., Shelykh I.A., Makarov S.V. // Phys. Chem. Chem. Phys. 2019. V. 21. Iss. 35. P. 18930. https://doi.org/10.1039/C9CP03656C
  13. Dey A., Ye J., De A., Debroye E., Ha S.K., Bladt E., Kshirsagar A.S., Wang Z., Yin J., Wang Y., Quan L.N., Yan F., Gao M., Li X., Shamsi J., Debnath T., Cao M., Scheel M.A., Kumar S., Steele J.A., Gerhard M., Chouhan L., Xu K., Wu X., Li Y., Zhang Y., Dutta A., Han C., Vincon I., Rogach A.L., Nag A., Samanta A., Korgel B.A., Shih C.-J., Gamelin D.R., Son D.H., Zeng H., Zhong H., Sun H., Demir H.V., Scheblykin I.G., Mora-Seró I., Stolarczyk J.K., Zhang J.Z., Feldmann J., Hofkens J., Luther J.M., Pérez-Prieto J., Li L., Manna L., Bodnarchuk M.I., Kovalenko M.V., Roeffaers M.B.J., Pradhan N., Mohammed O.F., Bakr O.M., Yang P., Müller-Buschbaum P., Kamat P.V., Bao Q., Zhang Q., Krahne R., Galian R.E., Stranks S. D., Bals S., Biju V., Tisdale W.A., Yan Y., Hoye R.L.Z., Polavarapu L. // ACS Nano. 2021. V. 15. Iss. 7. P. 10775. https://doi.org/10.1021/acsnano.0c08903
  14. Kovalenko M.V., Protesescu L., Bodnarchuk M.I. // Science. 2017. V. 358. Iss. 6364. P. 745. https://doi.org/10.1126/science.aam7093
  15. Mohapatra A., Kar M.R., Bhaumik S. // Frontiers in Electronic Materials. 2022. V. 2. https://doi.org/10.3389/femat.2022.891983
  16. Zhao X., Ng J.D.A., Friend R.H., Tan Z.-K. // ACS Photonics. 2018. V. 5. Iss. 10. P. 3866. https://doi.org/10.1021/acsphotonics.8b00745
  17. Wei Z., Xing J. // J. Phys. Chem. Lett. 2019. V. 10. Iss. 11. P. 3035. https://doi.org/10.1021/acs.jpclett.9b00277
  18. Zhang L., Mei L., Wang K., Lv Y., Zhang S., Lian Y., Liu X., Ma Z., Xiao G., Liu Q., Zhai S., Zhang S., Liu G., Yuan L., Guo B., Chen Z., Wei K., Liu A., Yue S., Niu G., Pan X., Sun J., Hua Y., Wu W.-Q., Di D., Zhao B., Tian J., Wang Z., Yang Y., Chu L., Yuan M., Zeng H., Yip H.-L., Yan K., Xu W., Zhu L., Zhang W., Xing G., Gao F., Ding L. // Nanomicro Lett. 2023. V. 15. Iss. 1. P. 177. https://doi.org/10.1007/s40820-023-01140-3
  19. Huo C., Fong Ch.F., Amara M.-R., Huang Y., Chen B., Zhang H., Guo L., Li H., Huang W., Diederichs C., Xiong Q. // Nano Lett. 2020. V. 20. Iss. 5. P. 3673. https://doi.org/10.1021/acs.nanolett.0c00611
  20. Xiang S., Fu Zh., Li W., Wei Y., Liu J., Liu H., Zhang R., Zhu L., Chen H. // ACS Energy Lett. 2018. V. 3. Iss. 8. P. 1824. https://doi.org/10.1021/acsenergylett.8b00820
  21. Peters J.A., Liu Zh., de Siena M.C., Kanatzidis M.G., Wessels B.W. // J. Luminescence. 2022. V. 243. P. 118661. https://doi.org/10.1016/j.jlumin.2021.118661
  22. Cheng L.-P., Huang J.-Sh., Shen Y., Li G.-P., Liu X. K., Li W., Wang Y.-H., Li Y.-Q., Jiang Y., Gao F., Lee Ch.-S., Tang J.-X. // Adv. Opt. Mater. 2018. V. 7. Iss. 4. P. 1801534. https://doi.org/10.1002/adom.201801534
  23. Jathar S.B., Rondiya S.R., Bade B.R., Nasane M.P., Barma S.V., Jadhav Y.A., Rokade A.V., Kore K.B., Nilegave D.S., Tandale P.U., Jadkar S.R., Funde A.M. // ES Mater. Manufacturing. 2021. V. 12. P. 72. https://doi.org/10.30919/esmm5f1036
  24. Gualdrón-Reyes A.F., Yoon S.J., Barea E.M., Agouram S., Muñoz-Sanjosé V., Meléndez Á.M., Niño-Gómez M.E., Mora-Seró I. // ACS Energy Lett. 2018. V. 4. Iss. 1. P. 54. https://doi.org/10.1021/acsenergylett.8b02207
  25. Nasibulin A.G., Moisala A., Brown D.P., Jiang H., Kauppinen E.I. // Chem. Phys. Lett. 2005. V.402. Iss. 1–3. P. 227. https://doi.org/10.1016/j.cplett.2004.12.040
  26. Gilshtein E., Nasibulin A.G. Aerosol synthesized carbon nanotube films for stretchable electronic applications. // IEEE NANO. 2015, Rome, Italy. P. 893.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. GaP nanowires with high height-to-diameter ratio.

下载 (248KB)
3. Fig. 2. CsPbBr3 perovskite layer on GaP nanowires.

下载 (278KB)
4. Fig. 3. Results of separating an array of GaP nanowires from a substrate using microtome cutting: unsuccessful, with detachment of the supporting layer (a); successful, together with the supporting layer (b).

下载 (174KB)
5. Fig. 4. The process of stretching a flexible sample using a caliper.

下载 (102KB)
6. Fig. 5. Electroluminescence of the light-emitting material on the substrate (a) and separated from the substrate (b). Current-voltage characteristics of the light-emitting sample before (1) and after separation (2) of the GaP nanocrystal array from the substrate (c) and the interface between the nanowire/carbon nanotube layers (d).

下载 (266KB)
7. Fig. 6. Comparison of normalized electroluminescence spectra of light-emitting material not separated (1) and separated (2) from the substrate.

下载 (88KB)
8. Fig. 7. Spectroradiometric characteristics of the sample on the substrate (a) and separated from the substrate (b) at the following current values on the LED: a) 0.5 (1); 1 (2); 3 (3); 5 (4); 10 (5); 15 (6); 20 mA (7); b) 0.1 (1); 0.2 (2); 0.3 mA (3); ampere-brightness characteristics of the LED on the substrate (c) and the flexible LED (d).

下载 (320KB)

版权所有 © Russian Academy of Sciences, 2025