Non-coding RNAs in Regulation of Protein Aggregation and Clearance Pathways: Current Perspectives Towards Alzheimer's Research and Therapy


Cite item

Full Text

Abstract

Alzheimer's disease (AD) is the leading cause of dementia, affecting approximately 45.0 million people worldwide and ranking as the fifth leading cause of mortality. AD is identified by neurofibrillary tangles (NFTs), which include abnormally phosphorylated tau-protein and amyloid protein (amyloid plaques). Peptide dysregulation is caused by an imbalance between the production and clearance of the amyloid-beta (Aβ) and NFT. AD begins to develop when these peptides are not cleared from the body. As a result, understanding the processes that control both normal and pathological protein recycling in neuronal cells is critical. Insufficient Aβ and NFT clearance are important factors in the development of AD. Autophagy, lysosomal dysfunction, and ubiquitin-proteasome dysfunction have potential roles in the pathogenesis of many neurodegenerative disorders, particularly in AD. Modulation of these pathways may provide a novel treatment strategy for AD. Non-coding RNAs (ncRNAs) have recently emerged as important biological regulators, with particular relevance to the emergence and development of neurodegenerative disorders such as AD. ncRNAs can be used as potential therapeutic targets and diagnostic biomarkers due to their critical regulatory functions in several biological processes involved in disease development, such as the aggregation and accumulation of Aβ and NFT. It is evident that ncRNAs play a role in the pathophysiology of AD. In this communication, we explored the link between ncRNAs and AD and their regulatory mechanisms that may help in finding new therapeutic targets and AD medications.

About the authors

Sonali Sundram

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

Neerupma Dhiman

Amity Institute of Pharmacy, Amity University Uttar Pradesh

Author for correspondence.
Email: info@benthamscience.net

Rishabha Malviya

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

Rajendra Awasthi

Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative diseases: Regenerative mechanisms and novel therapeutic approaches. Brain Sci 2018; 8(9): 177. doi: 10.3390/brainsci8090177 PMID: 30223579
  2. Alzheimer’s disease facts and figures. Alzheimers Dement 2023; 19(4): 1598-695. doi: 10.1002/alz.13016 PMID: 36918389
  3. Weglinski C, Jeans A. Amyloid-β in Alzheimer’s disease: Front and centre after all? Neuronal Signal 2023; 7(1): NS20220086. doi: 10.1042/NS20220086 PMID: 36687366
  4. Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH. Phosphorylated tau in alzheimer’s disease and other tauopathies. Int J Mol Sci 2022; 23(21): 12841. doi: 10.3390/ijms232112841 PMID: 36361631
  5. Ajmal MR. Protein misfolding and aggregation in proteinopathies: causes, mechanism and cellular response. Diseases 2023; 11(1): 30. doi: 10.3390/diseases11010030 PMID: 36810544
  6. Tecalco-Cruz AC, Pedraza-Chaverri J, Briones-Herrera A, Cruz-Ramos E, López-Canovas L, Zepeda-Cervantes J. Protein degradation-associated mechanisms that are affected in Alzheimer’s disease. Mol Cell Biochem 2022; 477(3): 915-25. doi: 10.1007/s11010-021-04334-8 PMID: 35083609
  7. Frankowska N, Lisowska K, Witkowski JM. Proteolysis dysfunction in the process of aging and age-related diseases. Frontiers in Aging 2022; 3: 927630. doi: 10.3389/fragi.2022.927630 PMID: 35958270
  8. Vilchez D, Saez I, Dillin A. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 2014; 5(1): 5659. doi: 10.1038/ncomms6659 PMID: 25482515
  9. Boland B, Yu WH, Corti O, et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 2018; 17(9): 660-88. doi: 10.1038/nrd.2018.109 PMID: 30116051
  10. Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 2019; 20(7): 421-35. doi: 10.1038/s41580-019-0101-y PMID: 30733602
  11. Sengupta S. Noncoding RNAs in protein clearance pathways: implications in neurodegenerative diseases. J Genet 2017; 96(1): 203-10. doi: 10.1007/s12041-017-0747-1 PMID: 28360406
  12. Wang M, Qin L, Tang B. MicroRNAs in Alzheimer’s disease. Front Genet 2019; 10: 153. doi: 10.3389/fgene.2019.00153 PMID: 30881384
  13. Peplow PV, Martinez B. MicroRNAs as diagnostic and therapeutic tools for Alzheimer’s disease: Advances and limitations. Neural Regen Res 2019; 14(2): 242-55. doi: 10.4103/1673-5374.244784 PMID: 30531004
  14. Idda ML, Munk R, Abdelmohsen K, Gorospe M. Noncoding RNAs in Alzheimer’s disease. Wiley Interdiscip Rev RNA 2018; 9(2): e1463. doi: 10.1002/wrna.1463 PMID: 29327503
  15. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22(2): 96-118. doi: 10.1038/s41580-020-00315-9 PMID: 33353982
  16. Hombach S, Kretz M. Non-coding RNAs: Classification, biology and functioning. Adv Exp Med Biol 2016; 937: 3-17. doi: 10.1007/978-3-319-42059-2_1 PMID: 27573892
  17. Losko M, Kotlinowski J, Jura J. Long Noncoding RNAs in metabolic syndrome related disorders. Mediators Inflamm 2016; 2016: 1-12. doi: 10.1155/2016/5365209 PMID: 27881904
  18. Morey C, Avner P. Employment opportunities for non-coding RNAs. FEBS Lett 2004; 567(1): 27-34. doi: 10.1016/j.febslet.2004.03.117 PMID: 15165889
  19. Guennewig B, Cooper AA. The central role of noncoding RNA in the brain. Int Rev Neurobiol 2014; 116: 153-94. doi: 10.1016/B978-0-12-801105-8.00007-2 PMID: 25172475
  20. Wu YY, Kuo HC. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J Biomed Sci 2020; 27(1): 49. doi: 10.1186/s12929-020-00636-z PMID: 32264890
  21. Taylor JP, Hardy J, Fischbeck KH. Toxic proteins in neurodegenerative disease. Science 2002; 296(5575): 1991-5. doi: 10.1126/science.1067122 PMID: 12065827
  22. Lim J, Yue Z. Neuronal aggregates: Formation, clearance, and spreading. Dev Cell 2015; 32(4): 491-501. doi: 10.1016/j.devcel.2015.02.002 PMID: 25710535
  23. Petrella C, Di Certo MG, Barbato C, et al. Neuropeptides in Alzheimer’s disease: An update. Curr Alzheimer Res 2019; 16(6): 544-58. doi: 10.2174/1567205016666190503152555 PMID: 31456515
  24. O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 2011; 34(1): 185-204. doi: 10.1146/annurev-neuro-061010-113613 PMID: 21456963
  25. Vu Nguyen K. β-Amyloid precursor protein (APP) and the human diseases. AIMS Neurosci 2019; 6(4): 273-81. doi: 10.3934/Neuroscience.2019.4.273 PMID: 32341983
  26. Kolarova M, García-Sierra F, Bartos A, Ricny J, Ripova D. Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers Dis 2012; 2012: 1-13. doi: 10.1155/2012/731526 PMID: 22690349
  27. Martin L, Latypova X, Terro F. Post-translational modifications of tau protein: Implications for Alzheimer’s disease. Neurochem Int 2011; 58(4): 458-71. doi: 10.1016/j.neuint.2010.12.023 PMID: 21215781
  28. Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 2000; 33(1): 95-130. doi: 10.1016/S0165-0173(00)00019-9 PMID: 10967355
  29. Kadavath H, Hofele RV, Biernat J, et al. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci 2015; 112(24): 7501-6. doi: 10.1073/pnas.1504081112 PMID: 26034266
  30. Matsui T, Ingelsson M, Fukumoto H, et al. Expression of APP pathway mRNAs and proteins in Alzheimer’s disease. Brain Res 2007; 1161: 116-23. doi: 10.1016/j.brainres.2007.05.050 PMID: 17586478
  31. Estrada L, Soto C. Disrupting β-amyloid aggregation for Alzheimer disease treatment. Curr Top Med Chem 2007; 7(1): 115-26. doi: 10.2174/156802607779318262 PMID: 17266599
  32. Hommen F, Bilican S, Vilchez D. Protein clearance strategies for disease intervention. J Neural Transm 2022; 129(2): 141-72. doi: 10.1007/s00702-021-02431-y PMID: 34689261
  33. Jayaraj GG, Hipp MS, Hartl FU. Functional modules of the proteostasis network. Cold Spring Harb Perspect Biol 2020; 12(1): a033951. doi: 10.1101/cshperspect.a033951 PMID: 30833457
  34. Fecto F, Esengul Y, Siddique T. Protein recycling pathways in neurodegenerative diseases. Alzheimers Res Ther 2014; 6(2): 13. doi: 10.1186/alzrt243 PMID: 25031631
  35. Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell 2006; 125(3): 443-51. doi: 10.1016/j.cell.2006.04.014 PMID: 16678092
  36. Miller DJ, Fort PE. Heat shock proteins regulatory role in neurodevelopment. Front Neurosci 2018; 12: 821. doi: 10.3389/fnins.2018.00821 PMID: 30483047
  37. Chen JJ, Lin F, Qin ZH. The roles of the proteasome pathway in signal transduction and neurodegenerative diseases. Neurosci Bull 2008; 24(3): 183-94. doi: 10.1007/s12264-008-0183-6 PMID: 18500392
  38. Melino G. Discovery of the ubiquitin proteasome system and its involvement in apoptosis. Cell Death Differ 2005; 12(9): 1155-7. doi: 10.1038/sj.cdd.4401740 PMID: 16094390
  39. Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature 2003; 426(6968): 895-9. doi: 10.1038/nature02263 PMID: 14685250
  40. Lambert-Smith IA, Saunders DN, Yerbury JJ. The pivotal role of ubiquitin-activating enzyme E1 (UBA1) in neuronal health and neurodegeneration. Int J Biochem Cell Biol 2020; 123: 105746. doi: 10.1016/j.biocel.2020.105746 PMID: 32315770
  41. Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med 2004; 10(S7) (Suppl.): S10-7. doi: 10.1038/nm1066 PMID: 15272267
  42. Zhang T, Pang P, Fang Z, et al. Expression of BC1 impairs spatial learning and memory in Alzheimer’s disease via APP translation. Mol Neurobiol 2018; 55(7): 6007-20. doi: 10.1007/s12035-017-0820-z PMID: 29134514
  43. Ciarlo E, Massone S, Penna I, et al. An intronic ncRNA-dependent regulation of SORL1 expression affecting Aβ formation is upregulated in post-mortem Alzheimer’s disease brain samples. Dis Model Mech 2012; 6(2): dmm.009761. doi: 10.1242/dmm.009761 PMID: 22996644
  44. Taylor HA, Przemylska L, Clavane EM, Meakin PJ. BACE1: More than just a β-secretase. Obes Rev 2022; 23(7): e13430. doi: 10.1111/obr.13430 PMID: 35119166
  45. Andersen OM, Reiche J, Schmidt V, et al. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci 2005; 102(38): 13461-6. doi: 10.1073/pnas.0503689102 PMID: 16174740
  46. Deng Y, Xiao L, Li W, et al. Plasma long noncoding RNA 51A as a stable biomarker of Alzheimer’s disease. Int J Clin Exp Pathol 2017; 10(4): 4694-9.
  47. Long JM, Ray B, Lahiri DK. MicroRNA-153 physiologically inhibits expression of amyloid-β precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. J Biol Chem 2012; 287(37): 31298-310. doi: 10.1074/jbc.M112.366336 PMID: 22733824
  48. Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell 2009; 136(2): 215-33. doi: 10.1016/j.cell.2009.01.002 PMID: 19167326
  49. Kleinberger G, Yamanishi Y, Suárez-Calvet M, et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 2014; 6(243): 243ra86. doi: 10.1126/scitranslmed.3009093 PMID: 24990881
  50. Tiribuzi R, Crispoltoni L, Porcellati S, et al. miR128 up-regulation correlates with impaired amyloid β(1-42) degradation in monocytes from patients with sporadic Alzheimer’s disease. Neurobiol Aging 2014; 35(2): 345-56. doi: 10.1016/j.neurobiolaging.2013.08.003 PMID: 24064186
  51. Patel N, Hoang D, Miller N, et al. MicroRNAs can regulate human APP levels. Mol Neurodegener 2008; 3(1): 10. doi: 10.1186/1750-1326-3-10 PMID: 18684319
  52. Zhang H, Liang J, Chen N. The potential role of miRNA-regulated autophagy in Alzheimer’s disease. Int J Mol Sci 2022; 23(14): 7789. doi: 10.3390/ijms23147789 PMID: 35887134
  53. Kim J, Fiesel FC, Belmonte KC, et al. miR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1). Mol Neurodegener 2016; 11(1): 55. doi: 10.1186/s13024-016-0121-4 PMID: 27456084
  54. Yang L, Wang H, Shen Q, Feng L, Jin H. Long non-coding RNAs involved in autophagy regulation. Cell Death Dis 2017; 8(10): e3073. doi: 10.1038/cddis.2017.464 PMID: 28981093
  55. Xu X, Cui L, Zhong W, Cai Y. Autophagy-associated lncRNAs: Promising targets for neurological disease diagnosis and therapy. Neural Plast 2020; 2020: 1-13. doi: 10.1155/2020/8881687 PMID: 33029125
  56. Cortini F, Roma F, Villa C. Emerging roles of long non-coding RNAs in the pathogenesis of Alzheimer’s disease. Ageing Res Rev 2019; 50: 19-26. doi: 10.1016/j.arr.2019.01.001 PMID: 30610928
  57. Ballantyne MD, McDonald RA, Baker AH. lncRNA/MicroRNA interactions in the vasculature. Clin Pharmacol Ther 2016; 99(5): 494-501. doi: 10.1002/cpt.355 PMID: 26910520
  58. Massone S, Vassallo I, Fiorino G, et al. 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis 2011; 41(2): 308-17. doi: 10.1016/j.nbd.2010.09.019 PMID: 20888417
  59. Asadi MR, Hassani M, Kiani S, et al. The perspective of dysregulated LncRNAs in Alzheimer’s Disease: A systematic scoping review. Front Aging Neurosci 2021; 13: 709568. doi: 10.3389/fnagi.2021.709568 PMID: 34621163
  60. Zhang M, He P, Bian Z. Long noncoding rnas in neurodegenerative diseases: Pathogenesis and potential implications as clinical biomarkers. Front Mol Neurosci 2021; 14: 685143. doi: 10.3389/fnmol.2021.685143 PMID: 34421536
  61. Huang Z, Zhao J, Wang W, Zhou J, Zhang J. Depletion of LncRNA NEAT1 rescues mitochondrial dysfunction through NEDD4L-dependent PINK1 degradation in animal models of Alzheimer’s disease. Front Cell Neurosci 2020; 14: 28. doi: 10.3389/fncel.2020.00028 PMID: 32140098
  62. Pathak GA, Silzer TK, Sun J, et al. Genome-wide methylation of mild cognitive impairment in mexican americans highlights genes involved in synaptic transport, alzheimer’s disease-precursor phenotypes, and metabolic morbidities. J Alzheimers Dis 2019; 72(3): 733-49. doi: 10.3233/JAD-190634 PMID: 31640099
  63. Zhao MY, Wang GQ, Wang NN, Yu QY, Liu RL, Shi WQ. The long-non-coding RNA NEAT1 is a novel target for Alzheimer’s disease progression via miR-124/BACE1 axis. Neurol Res 2019; 41(6): 489-97. doi: 10.1080/01616412.2018.1548747 PMID: 31014193
  64. Matsuda S, Kitagishi Y, Kobayashi M. Function and characteristics of PINK1 in mitochondria. Oxid Med Cell Longev 2013; 2013: 1-6. doi: 10.1155/2013/601587 PMID: 23533695
  65. Zhou Y, Ge Y, Liu Q, et al. LncRNA BACE1-AS promotes autophagy-mediated neuronal damage through the miR-214-3p/ATG5 signaling axis in Alzheimer’s disease. Neuroscience 2021; 455: 52-64. doi: 10.1016/j.neuroscience.2020.10.028 PMID: 33197504
  66. Faghihi MA, Zhang M, Huang J, et al. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 2010; 11(5): R56. doi: 10.1186/gb-2010-11-5-r56 PMID: 20507594
  67. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8. doi: 10.1038/nature11928 PMID: 23446348
  68. Shao Y, Chen Y. Roles of circular RNAs in neurologic disease. Front Mol Neurosci 2016; 9: 25. doi: 10.3389/fnmol.2016.00025 PMID: 27147959
  69. Sierksma A, Lu A, Salta E, et al. Deregulation of neuronal miRNAs induced by amyloid-β or TAU pathology. Mol Neurodegener 2018; 13(1): 54. doi: 10.1186/s13024-018-0285-1 PMID: 30314521
  70. Banzhaf-Strathmann J, Benito E, May S, et al. Micro RNA ‐125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J 2014; 33(15): 1667-80. doi: 10.15252/embj.201387576 PMID: 25001178
  71. Smith PY, Hernandez-Rapp J, Jolivette F, et al. miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum Mol Genet 2015; 24(23): 6721-35. doi: 10.1093/hmg/ddv377 PMID: 26362250

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers