Vol 24, No 1 (2024)
- Year: 2024
- Articles: 10
- URL: https://j-morphology.com/1566-5232/issue/view/9954
Life Sciences
Effectiveness and Application Prospect of Microbiota-based Treatment



Meet the Editorial Board Member



Development of Oral Bio-banks Past, Present and Future; Challenges and Opportunities
Abstract
Biobank involves collecting, processing, storing, and organizing biosamples, along with relevant personal and health information such as medical history, family records, genetics data, and lifestyle details, for medical research and clinical care. Oral biobanking is a recently evolved field alongside the rising of precision medicine due to recent research findings in oral oncology and other oral complaints, namely caries and periodontal disease. The common samples in oral biobanks are matured and primary teeth, dental pulp cells, oral biopsies, oral rinses, saliva, and swabs from the buccal region. Moreover, biobank should not conceive of as a static collection of samples and data but as a dynamic resource for developing novel techniques that meet current scientific demands through international networking. However, the major bottlenecks associated with oral biobanks are privacy, processing of samples, normalization of data, extended durability of interest markers of banked samples, and financial sustainability of biobanks. Thus in this correspondence, we argue that an alternative approach is urgently needed to protect the interests of many stakeholders.



Gene Therapy for Rare Genetic Diseases



RNA Interference and Neuromuscular Diseases: A Focus on Hereditary Transthyretin Amyloidosis
Abstract
Neuromuscular diseases are severe disorders affecting the peripheral nervous system, usually driving to death in a limited time. Many new drugs, through RNA-interference technology, are revolutionizing the prognosis and quality of life for these patients. Nevertheless, given the increased life expectancy, some new issues and phenotypes are expected to be revealed. In the transthyretin-mediated hereditary amyloidosis (ATTR-v, \"v\" for \"variant\"), the RNA interference was demonstrated to effectively reduce the hepatic synthesis of transthyretin, with a significant increase in disease progression in terms of polyneuropathy and cardiomyopathy. The increased life expectancy could promote the involvement of organs where the extra-hepatic transthyretin is deposited, such as the brain and eye, which are probably not targeted by the available treatments. All these issues are discussed in this editorial.



Non-coding RNAs in Regulation of Protein Aggregation and Clearance Pathways: Current Perspectives Towards Alzheimer's Research and Therapy
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, affecting approximately 45.0 million people worldwide and ranking as the fifth leading cause of mortality. AD is identified by neurofibrillary tangles (NFTs), which include abnormally phosphorylated tau-protein and amyloid protein (amyloid plaques). Peptide dysregulation is caused by an imbalance between the production and clearance of the amyloid-beta (Aβ) and NFT. AD begins to develop when these peptides are not cleared from the body. As a result, understanding the processes that control both normal and pathological protein recycling in neuronal cells is critical. Insufficient Aβ and NFT clearance are important factors in the development of AD. Autophagy, lysosomal dysfunction, and ubiquitin-proteasome dysfunction have potential roles in the pathogenesis of many neurodegenerative disorders, particularly in AD. Modulation of these pathways may provide a novel treatment strategy for AD. Non-coding RNAs (ncRNAs) have recently emerged as important biological regulators, with particular relevance to the emergence and development of neurodegenerative disorders such as AD. ncRNAs can be used as potential therapeutic targets and diagnostic biomarkers due to their critical regulatory functions in several biological processes involved in disease development, such as the aggregation and accumulation of Aβ and NFT. It is evident that ncRNAs play a role in the pathophysiology of AD. In this communication, we explored the link between ncRNAs and AD and their regulatory mechanisms that may help in finding new therapeutic targets and AD medications.



Duchenne Muscular Dystrophy Gene Therapy
Abstract
Abstracts:Duchenne and Becker muscular dystrophies are allelic X-linked recessive neuromuscular diseases affecting both skeletal and cardiac muscles. Therefore, owing to their single X chromosome, the affected boys receive pathogenic gene mutations from their unknowing carrier mothers. Current pharmacological drugs are palliative that address the symptoms of the disease rather than the genetic cause imbedded in the Dystrophin gene DNA sequence. Therefore, alternative therapies like gene drugs that could address the genetic cause of the disease at its root are crucial, which include gene transfer/implantation, exon skipping, and gene editing. Presently, it is possible through genetic reprogramming to engineer AAV vectors to deliver certain therapeutic cargos specifically to muscle or other organs regardless of their serotype. Similarly, it is possible to direct the biogenesis of exosomes to carry gene editing constituents or certain therapeutic cargos to specific tissue or cell type like brain and muscle. While autologous exosomes are immunologically inert, it is possible to camouflage AAV capsids, and lipid nanoparticles to evade the immune system recognition. In this review, we highlight current opportunities for Duchenne muscular dystrophy gene therapy, which has been known thus far as an incurable genetic disease. This article is a part of Gene Therapy of Rare Genetic Diseases thematic issue.



Identification of Important Genes Associated with the Development of Atherosclerosis
Abstract
Atherosclerosis is one of the most important medical problems due to its prevalence and significant contribution to the structure of temporary and permanent disability and mortality. Atherosclerosis is a complex chain of events occurring in the vascular wall over many years. Disorders of lipid metabolism, inflammation, and impaired hemodynamics are important mechanisms of atherogenesis. A growing body of evidence strengthens the understanding of the role of genetic and epigenetic factors in individual predisposition and development of atherosclerosis and its clinical outcomes. In addition, hemodynamic changes, lipid metabolism abnormalities, and inflammation are closely related and have many overlapping links in regulation. A better study of these mechanisms may improve the quality of diagnosis and management of such patients.



Innovative Genoceuticals in Human Gene Therapy Solutions: Challenges and Safe Clinical Trials of Orphan Gene Therapy Products
Abstract
The success of gene therapy attempts is controversial and inconclusive. Currently, it is popular among the public, the scientific community, and manufacturers of Gene Therapy Medical Products. In the absence of any remedy or treatment options available for untreatable inborn metabolic orphan or genetic diseases, cancer, or brain diseases, gene therapy treatment by genoceuticals and T-cells for gene editing and recovery remains the preferred choice as the last hope. A new concept of "Genoceutical Gene Therapy" by using orphan nucleic acid-based therapy aims to introduce scientific principles of treating acquired tissue damage and rare diseases. These Orphan Genoceuticals provide new scope for the genodrug development and evaluation of genoceuticals and gene products for ideal gene therapy use in humans with marketing authorization application (MAA). This perspective study focuses on the quality control, safety, and efficacy requirements of using nucleic acid-based and human cell-based new gene therapy genoceutical products to set scientific advice on genoceutical-based orphan genodrug design for clinical trials as per Western and European guidelines. The ethical Western FDA and European EMA guidelines suggest stringent legal and technical requirements on genoceutical medical products or orphan genodrug use for other countries to frame their own guidelines. The introduction section proposes less-- known orphan drug-like properties of modified RNA/DNA, human cell origin gene therapy medical products, and their transgene products. The clinical trial section explores the genoceutical sources, FDA/EMA approvals for genoceutical efficacy criteria with challenges, and ethical guidelines relating to gene therapy of specific rare metabolic, cancer and neurological diseases. The safety evaluation of approved genoceuticals or orphan drugs is highlighted with basic principles and genovigilance requirements (to observe any adverse effects, side effects, developed signs/symptoms) to establish their therapeutic use. Current European Union and Food and Drug Administration guidelines continuously administer fast-track regulatory legal framework from time to time, and they monitor the success of gene therapy medical product efficacy and safety. Moreover, new ethical guidelines on orphan drug-like genoceuticals are updated for biodistribution of the vector, genokinetics studies of the transgene product, requirements for efficacy studies in industries for market authorization, and clinical safety endpoints with their specific concerns in clinical trials or public use.



Isoliquiritin Ameliorates Ulcerative Colitis in Rats through Caspase 3/HMGB1/TLR4 Dependent Signaling Pathway
Abstract
Background:Isoliquiritin belongs to flavanol glycosides and has a strong antiinflammatory activity. This study sought to investigate the anti-inflammatory effect of isoliquiritin and its underlying mechanism.
Methods:The inflammatory (trinitro-benzene-sulfonic acid-TNBS-induced ulcerative colitis (UC)) model was established to ascertain the effect of isoliquiritin on the caspase-3/HMGB1/TLR4 pathway in rats. We also explored its protective effect on intestinal inflammation and its underlying mechanism using the LPS-induced inflammation model of Caco-2 cells. Besides, Deseq2 was used to analyze UCassociated protein levels.
Results:Isoliquiritin treatment significantly attenuated shortened colon length (induced by TNBS), disease activity index (DAI) score, and body weight loss in rats. A decrease in the levels of inflammatory mediators (IL-1β, I IL-4, L-6, IL-10, PGE2, and TNF-α), coupled with malondialdehyde (MDA) and superoxide dismutase (SOD), was observed in colon tissue and serum of rats after they have received isoliquiritin. Results of techniques (like western blotting, real-time PCR, immunohistochemistry, and immunofluorescence-IF) demonstrated the potential of isoliquiritin to decrease expressions of key genes in the TLR4 downstream pathways, viz., MyD88, IRAK1, TRAF6, NF-κB, p38, and JNK at mRNA and protein levels as well as inhibit HMGB1 expression, which is the upstream ligand of TLR4. Bioinformational analysis showed enteritis to be associated with a high expression of HMGB1, TLR4, and caspase-3.
Conclusion:Isoliquiritin could reduce intestinal inflammation and mucosal damage of TNBS-induced colitis in rats with a certain anti-UC effect. Meanwhile, isoliquiritin treatment also inhibited the expression of HMGB1, TLR4, and MyD88 in LPS-induced Caco-2 cells. These results indicated that isoliquiritin could ameliorate UC through the caspase-3/HMGB1/TLR4-dependent signaling pathway.


