Duchenne Muscular Dystrophy Gene Therapy


Cite item

Full Text

Abstract

Abstracts:Duchenne and Becker muscular dystrophies are allelic X-linked recessive neuromuscular diseases affecting both skeletal and cardiac muscles. Therefore, owing to their single X chromosome, the affected boys receive pathogenic gene mutations from their unknowing carrier mothers. Current pharmacological drugs are palliative that address the symptoms of the disease rather than the genetic cause imbedded in the Dystrophin gene DNA sequence. Therefore, alternative therapies like gene drugs that could address the genetic cause of the disease at its root are crucial, which include gene transfer/implantation, exon skipping, and gene editing. Presently, it is possible through genetic reprogramming to engineer AAV vectors to deliver certain therapeutic cargos specifically to muscle or other organs regardless of their serotype. Similarly, it is possible to direct the biogenesis of exosomes to carry gene editing constituents or certain therapeutic cargos to specific tissue or cell type like brain and muscle. While autologous exosomes are immunologically inert, it is possible to camouflage AAV capsids, and lipid nanoparticles to evade the immune system recognition. In this review, we highlight current opportunities for Duchenne muscular dystrophy gene therapy, which has been known thus far as an incurable genetic disease. This article is a part of Gene Therapy of Rare Genetic Diseases thematic issue.

About the authors

Fawzy Saad

Department of Biology, Padua University School of Medicine

Author for correspondence.
Email: info@benthamscience.net

Jasen Saad

Department of Gene Therapy, Saad Pharmaceuticals

Email: info@benthamscience.net

Gabriele Siciliano

Department of Clinical and Experimental Medicine, Pisa University School of Medicine

Email: info@benthamscience.net

Luciano Merlini

Department of Biomedical and Neuromotor Sciences,, Bologna University School of Medicine

Email: info@benthamscience.net

Corrado Angelini

Department Neurosciences, Padova University School of Medicine

Email: info@benthamscience.net

References

  1. Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM. Complete cloning of the duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 1987; 50(3): 509-17. doi: 10.1016/0092-8674(87)90504-6 PMID: 3607877
  2. Gherardi S, Bovolenta M, Passarelli C, et al. Transcriptional and epigenetic analyses of the DMD locus reveal novel cis acting DNA elements that govern muscle dystrophin expression. Biochim Biophys Acta Gene Regul Mech 2017; 1860(11): 1138-47. doi: 10.1016/j.bbagrm.2017.08.010 PMID: 28867298
  3. Young CS, Mokhonova E, Quinonez M, Pyle AD, Spencer MJ. Creation of a novel humanized dystrophic mouse model of duchenne muscular dystrophy and application of a CRISPR/Cas9 gene editing therapy. J Neuromuscul Dis 2017; 4(2): 139-45. doi: 10.3233/JND-170218 PMID: 28505980
  4. Saad FA. Novel insights into the complex architecture of osteoporosis molecular genetics. Ann N Y Acad Sci 2020; 1462(1): 37-52. doi: 10.1111/nyas.14231 PMID: 31556133
  5. Rodino-Klapac LR, Haidet AM, Kota J, Handy C, Kaspar BK, Mendell JR. Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve 2009; 39(3): 283-96. doi: 10.1002/mus.21244 PMID: 19208403
  6. Bladen CL, Salgado D, Monges S, et al. The TREAT-NMD DMD Global Database: Analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat 2015; 36(4): 395-402. doi: 10.1002/humu.22758 PMID: 25604253
  7. Koenig M, Beggs AH, Moyer M, et al. The molecular basis for Duchenne versus Becker muscular dystrophy: Correlation of severity with type of deletion. Am J Hum Genet 1989; 45(4): 498-506. PMID: 2491009
  8. Love DR, Flint TJ, Genet SA, Middleton-Price HR, Davies KE. Becker muscular dystrophy patient with a large intragenic dystrophin deletion: Implications for functional minigenes and gene therapy. J Med Genet 1991; 28(12): 860-4. doi: 10.1136/jmg.28.12.860 PMID: 1757963
  9. Tuffery-Giraud S, Béroud C, Leturcq F, et al. Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: A model of nationwide knowledgebase. Hum Mutat 2009; 30(6): 934-45. doi: 10.1002/humu.20976 PMID: 19367636
  10. Mostacciuolo ML, Miorin M, Pegoraro E, et al. Reappraisal of the incidence rate of Duchenne and Becker muscular dystrophies on the basis of molecular diagnosis. Neuroepidemiology 1993; 12(6): 326-30. doi: 10.1159/000110334 PMID: 8309507
  11. Galvagni F, Saad FA, Danieli GA, et al. A study on duplications of the dystrophin gene: Evidence of a geographical difference in the distribution of breakpoints by intron. Hum Genet 1994; 94(1): 83-7. doi: 10.1007/BF02272848 PMID: 8034300
  12. Roberts RG, Bobrow M, Bentley DR. Point mutations in the dystrophin gene. Proc Natl Acad Sci USA 1992; 89(6): 2331-5. doi: 10.1073/pnas.89.6.2331 PMID: 1549596
  13. Kilimann M, Pizzuti A, Grompe M, Caskey CT. Point mutations and polymorphisms in the human dystrophin gene identified in genomic DNA sequences amplified by multiplex PCR. Hum Genet 1992; 89(3): 253-8. doi: 10.1007/BF00220535 PMID: 1601417
  14. Saad FA, Vitiello L, Merlini L, Mostacciuolo ML, Oliviero S, Danieli GAA. 3′ consensus splice mutation in the human dystrophin gene detected by a screening for intra-exonic deletions. Hum Mol Genet 1992; 1(5): 345-6. doi: 10.1093/hmg/1.5.345 PMID: 1303213
  15. Lenk U, Hanke R, Thiele H, Speer A. Point mutations at the carboxy terminus of the human dystrophin gene: Implications for an association with mental retardation in DMD patients. Hum Mol Genet 1993; 2(11): 1877-81. doi: 10.1093/hmg/2.11.1877 PMID: 8281150
  16. Prior TW, Papp AC, Snyder PJ, et al. Identification of two point mutations and a one base deletion in exon 19 of the dystrophin gene by heteroduplex formation. Hum Mol Genet 1993; 2(3): 311-3. doi: 10.1093/hmg/2.3.311 PMID: 8499922
  17. Saad FA, Vita G, Mora M, et al. A novel nonsense mutation in the human dystrophin gene. Hum Mutat 1993; 2(4): 314-6. doi: 10.1002/humu.1380020413 PMID: 8401539
  18. Wilton SD, Johnsen RD, Pedretti JR, Laing NG. Two distinct mutations in a single dystrophin gene: Identification of an altered splice-site as the primary becker muscular dystrophy mutation. Am J Med Genet 1993; 46(5): 563-9. doi: 10.1002/ajmg.1320460521 PMID: 8322822
  19. Saad FA, Vita G, Toffolatti L, Danieli GA. A possible missense mutation detected in the dystrophin gene by double strand conformation analysis (DSCA). Neuromuscul Disord 1994; 4(4): 335-41. doi: 10.1016/0960-8966(94)90069-8 PMID: 7981590
  20. Tuffery S, Bareil C, Demaille J, Claustres M. Four novel dystrophin point mutations: Detection by protein truncation test and transcript analysis in lymphocytes from Duchenne muscular dystrophy patients. Eur J Hum Genet 1996; 4(3): 143-52. doi: 10.1159/000472188 PMID: 8840114
  21. Lasa A, Gallano P, Baiget M. Three novel point mutations in the dystrophin gene in DMD patients. Hum Mutat 1997; 9(5): 473-4. doi: 10.1002/(SICI)1098-1004(1997)9:53.0.CO;2-# PMID: 9143930
  22. Saad FA, Mostacciuolo ML, Trevisan CP, et al. Novel mutations and polymorphisms in the human dystrophin gene detected by double-strand conformation analysis. Hum Mutat 1997; 9(2): 188-90. doi: 10.1002/(SICI)1098-1004(1997)9:23.0.CO;2-Z PMID: 9067763
  23. Sitnik R, Campiotto S, Vainzof M, et al. Novel point mutations in the dystrophin gene. Hum Mutat 1997; 10(3): 217-22. doi: 10.1002/(SICI)1098-1004(1997)10:33.0.CO;2-F PMID: 9298822
  24. Cau M, Cao A, Loi D, et al. Two novel mutations (10410 T→G; 10296 del C) at carboxy-terminus of the dystrophin gene associated with mental retardation. Hum Mutat 1998; 12(1): 70. doi: 10.1002/(SICI)1098-1004(1998)12:13.0.CO;2-G PMID: 10627134
  25. Saad FA, Merlini L, Mostacciuolo ML, Danieli GA. Double missense mutation in exon 41 of the human dystrophin gene detected by double strand conformation analysis. Am J Med Genet 1998; 80(2): 99-102. doi: 10.1002/(SICI)1096-8628(19981102)80:23.0.CO;2-L PMID: 9805122
  26. Ikezawa M, Nishino I, Goto Y, Miike T, Nonaka I. Newly recognized exons induced by a splicing abnormality from an intronic mutation of the dystrophin gene resulting in Duchenne muscular dystrophy. Hum Mutat 1999; 13(2): 170. doi: 10.1002/(SICI)1098-1004(1999)13:23.0.CO;2-7 PMID: 10094556
  27. Ginjaar HB, van der Kooi AJ, Ceelie H, et al. Sarcoglycanopathies in Dutch patients with autosomal recessive limb girdle muscular dystrophy. J Neurol 2000; 247(7): 524-9. doi: 10.1007/s004150070151 PMID: 10993494
  28. Percesepe A, Ferrari M, Coviello D, et al. Detection of a novel dystrophin gene mutation through carrier analysis performed during prenatal diagnosis in a case with intragenic recombination. Prenat Diagn 2005; 25(11): 1011-4. doi: 10.1002/pd.1238 PMID: 16231306
  29. Baskin B, Banwell B, Khater RA, Hawkins C, Ray PN. Becker muscular dystrophy caused by an intronic mutation reducing the efficiency of the splice donor site of intron 26 of the dystrophin gene. Neuromuscul Disord 2009; 19(3): 189-92. doi: 10.1016/j.nmd.2008.11.003 PMID: 19230662
  30. Zhu JF, Liu HH, Zhou T, Tian L. Novel mutation in exon 56 of the dystrophin gene in a child with Duchenne muscular dystrophy. Int J Mol Med 2013; 32(5): 1166-70. doi: 10.3892/ijmm.2013.1498 PMID: 24065205
  31. Todeschini A, Gualandi F, Trabanelli C, et al. Becker muscular dystrophy due to an intronic splicing mutation inducing a dual dystrophin transcript. Neuromuscul Disord 2016; 26(10): 662-5. doi: 10.1016/j.nmd.2016.08.007 PMID: 27616544
  32. Jiang J, Jiang T, Xu J, Shen J, Gao F. Novel mutation of the dystrophin gene in a child with duchenne muscular dystrophy. Fetal Pediatr Pathol 2018; 37(1): 1-6. doi: 10.1080/15513815.2017.1369201 PMID: 29336709
  33. Wang Y, Chen Y, Wang SM, Liu X, Gu YN, Feng Z. Prenatal diagnosis of Duchenne muscular dystrophy revealed a novel mosaic mutation in Dystrophin gene: A case report. BMC Med Genet 2020; 21(1): 222. doi: 10.1186/s12881-020-01157-0
  34. Zimowski JG, Purzycka J, Pawelec M, Ozdarska K, Zaremba J. Small mutations in Duchenne/Becker muscular dystrophy in 164 unrelated Polish patients. J Appl Genet 2021; 62(2): 289-95. doi: 10.1007/s13353-020-00605-0 PMID: 33420945
  35. Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1988; 2(1): 90-5. doi: 10.1016/0888-7543(88)90113-9 PMID: 3384440
  36. Aartsma-Rus A, Kaman WE, Weij R, den Dunnen JT, van Ommen GJB, van Deutekom JCT. Exploring the frontiers of therapeutic exon skipping for Duchenne muscular dystrophy by double targeting within one or multiple exons. Mol Ther 2006; 14(3): 401-7. doi: 10.1016/j.ymthe.2006.02.022 PMID: 16753346
  37. Echigoya Y, Lim KRQ, Nakamura A, Yokota T. Multiple exon skipping in the duchenne muscular dystrophy hot spots: Prospects and challenges. J Pers Med 2018; 8(4): 41. doi: 10.3390/jpm8040041 PMID: 30544634
  38. Millay DP, Sargent MA, Osinska H, et al. Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nat Med 2008; 14(4): 442-7. doi: 10.1038/nm1736 PMID: 18345011
  39. Wissing ER, Millay DP, Vuagniaux G, Molkentin JD. Debio-025 is more effective than prednisone in reducing muscular pathology in mdx mice. Neuromuscul Disord 2010; 20(11): 753-60. doi: 10.1016/j.nmd.2010.06.016 PMID: 20637615
  40. Schiavone M, Zulian A, Menazza S, et al. Alisporivir rescues defective mitochondrial respiration in Duchenne muscular dystrophy. Pharmacol Res 2017; 125(Pt B): 122-31. doi: 10.1016/j.phrs.2017.09.001
  41. Pellegrini C, Zulian A, Gualandi F, et al. Melanocytes-A novel tool to study mitochondrial dysfunction in Duchenne muscular dystrophy. J Cell Physiol 2013; 228(6): 1323-31. doi: 10.1002/jcp.24290 PMID: 23169061
  42. Zulian A, Tagliavini F, Rizzo E, et al. Melanocytes from patients affected by ullrich congenital muscular dystrophy and bethlem myopathy have dysfunctional mitochondria that can be rescued with cyclophilin inhibitors. Front Aging Neurosci 2014; 6: 324. doi: 10.3389/fnagi.2014.00324 PMID: 25477819
  43. Tiepolo T, Angelin A, Palma E, et al. The cyclophilin inhibitor Debio 025 normalizes mitochondrial function, muscle apoptosis and ultrastructural defects in Col6a1−/− myopathic mice. Br J Pharmacol 2009; 157(6): 1045-52. doi: 10.1111/j.1476-5381.2009.00316.x PMID: 19519726
  44. Angelin A, Tiepolo T, Sabatelli P, et al. Mitochondrial dysfunction in the pathogenesis of Ullrich congenital muscular dystrophy and prospective therapy with cyclosporins. Proc Natl Acad Sci USA 2007; 104(3): 991-6. doi: 10.1073/pnas.0610270104 PMID: 17215366
  45. Merlini L, Nishino I. 201st ENMC International Workshop: Autophagy in muscular dystrophies – Translational approach, 1–3 November 2013, Bussum, The Netherlands. Neuromuscul Disord 2014; 24(6): 546-61. doi: 10.1016/j.nmd.2014.03.009 PMID: 24746377
  46. Cencic R, Miura H, Malina A, et al. Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage. PLoS One 2014; 9(10): e109213. doi: 10.1371/journal.pone.0109213 PMID: 25275497
  47. Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013; 154(2): 442-51. doi: 10.1016/j.cell.2013.06.044 PMID: 23849981
  48. Eid A, Alshareef S, Mahfouz MM. CRISPR base editors: Genome editing without double-stranded breaks. Biochem J 2018; 475(11): 1955.1964.
  49. Gapinske M, Luu A, Winter J, et al. CRISPR-SKIP: Programmable gene splicing with single base editors. Genome Biol 2018; 19(1): 107. doi: 10.1186/s13059-018-1482-5 PMID: 30107853
  50. Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019; 576(7785): 149-57. doi: 10.1038/s41586-019-1711-4 PMID: 31634902
  51. Chen PJ, Hussmann JA, Yan J, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 2021; 184(22): 5635-5652.e29. doi: 10.1016/j.cell.2021.09.018
  52. Li HL, Fujimoto N, Sasakawa N, et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports 2015; 4(1): 143-54. doi: 10.1016/j.stemcr.2014.10.013 PMID: 25434822
  53. Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 2015; 6(1): 6244. doi: 10.1038/ncomms7244 PMID: 25692716
  54. Kourakis S, Timpani CA, Campelj DG, et al. Standard of care versus new-wave corticosteroids in the treatment of Duchenne muscular dystrophy: Can we do better? Orphanet J Rare Dis 2021; 16(1): 117. doi: 10.1186/s13023-021-01758-9 PMID: 33663533
  55. Angelini C. The role of corticosteroids in muscular dystrophy: A critical appraisal. Muscle Nerve 2007; 36(4): 424-35. doi: 10.1002/mus.20812 PMID: 17541998
  56. Shah D. Are corticosteroids effective in Duchenne muscular dystrophy. Indian Pediatr 2008; 45(5): 401-2. PMID: 18515930
  57. Manzur AY, Kuntzer T, Pike M, Swan A. Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev 2008; 23(1): CD003725. PMID: 18254031
  58. Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Libr 2016; 2016(6): CD003725. doi: 10.1002/14651858.CD003725.pub4 PMID: 27149418
  59. Schreiber A, Brochard S, Rippert P, et al. Corticosteroids in Duchenne muscular dystrophy: Impact on the motor function measure sensitivity to change and implications for clinical trials. Dev Med Child Neurol 2018; 60(2): 185-91. doi: 10.1111/dmcn.13590 PMID: 28990163
  60. Buckon C, Sienko S, Bagley A, et al. Can quantitative muscle strength and functional motor ability differentiate the influence of age and corticosteroids in ambulatory boys with duchenne muscular dystrophy? PLoS Curr 2016. 8. ecurrents.md.1ced64dff945f8958221fddcd4ee60b0.
  61. Merlini L, Cecconi I, Parmeggiani A, Cordelli DM, Dormi A. Quadriceps muscle strength in Duchenne muscular dystrophy and effect of corticosteroid treatment. Acta Myol 2020; 39(4): 200-6. PMID: 33458575
  62. Pereira RC, Delany AM, Canalis E. Effects of cortisol and bone morphogenetic protein-2 on stromal cell differentiation: Correlation with CCAAT-enhancer binding protein expression. Bone 2002; 30(5): 685-91. doi: 10.1016/S8756-3282(02)00687-7 PMID: 11996905
  63. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 1998; 102(2): 274-82. doi: 10.1172/JCI2799 PMID: 9664068
  64. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: An endocrine cell... and more. Endocr Rev 2013; 34(5): 658-90. doi: 10.1210/er.2012-1026 PMID: 23612223
  65. Mirza F, Canalis E. Management of endocrine disease: Secondary osteoporosis: Pathophysiology and management. Eur J Endocrinol 2015; 173(3): R131-51. doi: 10.1530/EJE-15-0118 PMID: 25971649
  66. Hofbauer LC, Gori F, Riggs BL, et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: Potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 1999; 140(10): 4382-9. doi: 10.1210/endo.140.10.7034 PMID: 10499489
  67. Van Staa TP, Leufkens HGM, Abenhaim L, Zhang B, Cooper C. Use of oral corticosteroids and risk of fractures. J Bone Miner Res 2000; 15(6): 993-1000. doi: 10.1359/jbmr.2000.15.6.993 PMID: 10841167
  68. Heier CR, Yu Q, Fiorillo AA, et al. Vamorolone targets dual nuclear receptors to treat inflammation and dystrophic cardiomyopathy. Life Sci Alliance 2019; 2(1): e201800186. doi: 10.26508/lsa.201800186 PMID: 30745312
  69. Donovan JM, Zimmer M, Offman E, Grant T, Jirousek M. A novel NF‐κB inhibitor, Edasalonexent (CAT‐1004), in development as a disease‐Modifying treatment for patients with duchenne muscular dystrophy: Phase 1 safety, pharmacokinetics, and pharmacodynamics in adult subjects. J Clin Pharmacol 2017; 57(5): 627-39. doi: 10.1002/jcph.842 PMID: 28074489
  70. Finkel RS, Finanger E, Vandenborne K, et al. Disease-modifying effects of edasalonexent, an NF-κB inhibitor, in young boys with Duchenne muscular dystrophy: Results of the MoveDMD phase 2 and open label extension trial. Neuromuscul Disord 2021; 31(5): 385-96. doi: 10.1016/j.nmd.2021.02.001 PMID: 33678513
  71. Guiraud S, Davies KE. Pharmacological advances for treatment in Duchenne muscular dystrophy. Curr Opin Pharmacol 2017; 34: 36-48. doi: 10.1016/j.coph.2017.04.002 PMID: 28486179
  72. Zhang Y, Li H, Min YL, et al. Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Sci Adv 2020; 6(8): eaay6812. doi: 10.1126/sciadv.aay6812 PMID: 32128412
  73. Yang Y, Wang L, Bell P, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 2016; 34(3): 334-8. doi: 10.1038/nbt.3469 PMID: 26829317
  74. Chemello F, Chai AC, Li H, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv 2021; 7(18): eabg4910. doi: 10.1126/sciadv.abg4910 PMID: 33931459
  75. Lau CH, Suh Y. In vivo genome editing in animals using AAV-CRISPR system: Applications to translational research of human disease. F1000 Res 2017; 6: 2153-73. doi: 10.12688/f1000research.11243.1 PMID: 29333255
  76. Wang JZ, Wu P, Shi ZM, Xu YL, Liu ZJ. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Brain Dev 2017; 39(7): 547-56. doi: 10.1016/j.braindev.2017.03.024 PMID: 28390761
  77. Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 2017; 377(18): 1713-22. doi: 10.1056/NEJMoa1706198 PMID: 29091557
  78. Cotten M, Wagner E. Non-viral approaches to gene therapy. Curr Opin Biotechnol 1993; 4(6): 705-10. doi: 10.1016/0958-1669(93)90053-Y PMID: 7764468
  79. Rando TA. Non-viral gene therapy for Duchenne muscular dystrophy: Progress and challenges. Biochim Biophys Acta Mol Basis Dis 2007; 1772(2): 263-71. doi: 10.1016/j.bbadis.2006.07.009 PMID: 17005381
  80. Yang J, Liu X, Yu J, et al. A non-viral vector for potential DMD gene therapy study by targeting a minidystrophin-GFP fusion gene into the hrDNA locus. Acta Biochim Biophys Sin (Shanghai) 2009; 41(12): 1053-60. doi: 10.1093/abbs/gmp080 PMID: 20011980
  81. Loperfido M, Jarmin S, Dastidar S, et al. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts. Nucleic Acids Res 2016; 44(2): 744-60. doi: 10.1093/nar/gkv1464 PMID: 26682797
  82. Xu L, Park KH, Zhao L, et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 2016; 24(3): 564-9. doi: 10.1038/mt.2015.192 PMID: 26449883
  83. Zuris JA, Thompson DB, Shu Y, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 2015; 33(1): 73-80. doi: 10.1038/nbt.3081 PMID: 25357182
  84. Lee K, Conboy M, Park HM, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng 2017; 1(11): 889-901. doi: 10.1038/s41551-017-0137-2 PMID: 29805845
  85. Aartsma-Rus A, Fokkema I, Verschuuren J, et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 2009; 30(3): 293-9. doi: 10.1002/humu.20918 PMID: 19156838
  86. Mizobe Y, Miyatake S, Takizawa H, et al. In vivo Evaluation of single-exon and multiexon skipping in mdx52 mice. Methods Mol Biol 2018; 1828: 275-92. doi: 10.1007/978-1-4939-8651-4_17 PMID: 30171548
  87. Min YL, Bassel-Duby R, Olson EN. CRISPR correction of duchenne muscular dystrophy. Annu Rev Med 2019; 70(1): 239-55. doi: 10.1146/annurev-med-081117-010451 PMID: 30379597
  88. Amoasii L, Long C, Li H, et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med 2017; 9(418): eaan8081. doi: 10.1126/scitranslmed.aan8081 PMID: 29187645
  89. Amoasii L, Hildyard JCW, Li H, et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 2018; 362(6410): 86-91. doi: 10.1126/science.aau1549 PMID: 30166439
  90. Incitti T, De Angelis FG, Cazzella V, et al. Exon skipping and duchenne muscular dystrophy therapy: Selection of the most active U1 snRNA antisense able to induce dystrophin exon 51 skipping. Mol Ther 2010; 18(9): 1675-82. doi: 10.1038/mt.2010.123 PMID: 20551908
  91. Cirak S, Feng L, Anthony K, et al. Restoration of the dystrophin-associated glycoprotein complex after exon skipping therapy in Duchenne muscular dystrophy. Mol Ther 2012; 20(2): 462-7. doi: 10.1038/mt.2011.248 PMID: 22086232
  92. Novak JS, Spathis R, Dang UJ, et al. Interrogation of dystrophin and dystroglycan complex protein turnover after exon skipping therapy. J Neuromuscul Dis 2021; 8(s2): S383-402. doi: 10.3233/JND-210696 PMID: 34569969
  93. Flanigan KM, Dunn DM, von Niederhausern A, et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: Application of modern diagnostic techniques to a large cohort. Hum Mutat 2009; 30(12): 1657-66. doi: 10.1002/humu.21114 PMID: 19937601
  94. Kemaladewi DU, Hoogaars WMH, van Heiningen SH, et al. Dual exon skipping in myostatin and dystrophin for Duchenne muscular dystrophy. BMC Med Genomics 2011; 4(1): 36. doi: 10.1186/1755-8794-4-36 PMID: 21507246
  95. Malerba A, Kang JK, McClorey G, et al. Dual myostatin and dystrophin exon skipping by morpholino nucleic acid oligomers conjugated to a cell-penetrating peptide is a promising therapeutic strategy for the treatment of duchenne muscular dystrophy. Mol Ther Nucleic Acids 2012; 1(12): e62. doi: 10.1038/mtna.2012.54 PMID: 23250360
  96. Aoki Y, Yokota T, Wood MJA. Development of multiexon skipping antisense oligonucleotide therapy for Duchenne muscular dystrophy. BioMed Res Int 2013; 2013: 1-8. doi: 10.1155/2013/402369 PMID: 23984357
  97. Béroud C, Tuffery-Giraud S, Matsuo M, et al. Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Hum Mutat 2007; 28(2): 196-202. doi: 10.1002/humu.20428 PMID: 17041910
  98. Yazaki M, Yoshida K, Nakamura A, et al. Clinical characteristics of aged Becker muscular dystrophy patients with onset after 30 years. Eur Neurol 1999; 42(3): 145-9. doi: 10.1159/000008089 PMID: 10529540
  99. Nakamura A, Yoshida K, Fukushima K, et al. Follow-up of three patients with a large in-frame deletion of exons 45-55 in the Duchenne muscular dystrophy (DMD) gene. J Clin Neurosci 2008; 15(7): 757-63. doi: 10.1016/j.jocn.2006.12.012 PMID: 18261911
  100. Nakamura A, Shiba N, Miyazaki D, et al. Comparison of the phenotypes of patients harboring in-frame deletions starting at exon 45 in the Duchenne muscular dystrophy gene indicates potential for the development of exon skipping therapy. J Hum Genet 2017; 62(4): 459-63. doi: 10.1038/jhg.2016.152 PMID: 27974813
  101. Heald A, Anderson LVB, Bushby KMD, Shaw PJ. Becker muscular dystrophy with onset after 60 years. Neurology 1994; 44(12): 2388-90. doi: 10.1212/WNL.44.12.2388 PMID: 7991131
  102. Ferreiro V, Giliberto F, Muñiz GMN, et al. Asymptomatic Becker muscular dystrophy in a family with a multiexon deletion. Muscle Nerve 2009; 39(2): 239-43. doi: 10.1002/mus.21193 PMID: 19012301
  103. Anthony K, Cirak S, Torelli S, et al. Dystrophin quantification and clinical correlations in Becker muscular dystrophy: Implications for clinical trials. Brain 2011; 134(12): 3547-59. doi: 10.1093/brain/awr291 PMID: 22102647
  104. van den Bergen JC, Schade van Westrum SM, Dekker L, et al. Clinical characterisation of Becker muscular dystrophy patients predicts favourable outcome in exon-skipping therapy. J Neurol Neurosurg Psychiatry 2014; 85(1): 92-8. doi: 10.1136/jnnp-2012-304729 PMID: 23667215
  105. Taglia A, Petillo R, D’Ambrosio P, et al. Clinical features of patients with dystrophinopathy sharing the 45-55 exon deletion of DMD gene. Acta Myol 2015; 34(1): 9-13. PMID: 26155064
  106. Nakamura A, Fueki N, Shiba N, et al. Deletion of exons 3−9 encompassing a mutational hot spot in the DMD gene presents an asymptomatic phenotype, indicating a target region for multiexon skipping therapy. J Hum Genet 2016; 61(7): 663-7. doi: 10.1038/jhg.2016.28 PMID: 27009627
  107. Mori-Yoshimura M, Mitsuhashi S, Nakamura H, et al. Characteristics of japanese patients with becker muscular dystrophy and intermediate muscular dystrophy in a japanese national registry of muscular dystrophy (Remudy): Heterogeneity and clinical variation. J Neuromuscul Dis 2018; 5(2): 193-203. doi: 10.3233/JND-170225 PMID: 29614690
  108. Tanihata J, Nagata T, Ito N, et al. Truncated dystrophin ameliorates the dystrophic phenotype of mdx mice by reducing sarcolipin-mediated SERCA inhibition. Biochem Biophys Res Commun 2018; 505(1): 51-9. doi: 10.1016/j.bbrc.2018.09.039 PMID: 30236982
  109. Long C, Li H, Tiburcy M, et al. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci Adv 2018; 4(1): eaap9004. doi: 10.1126/sciadv.aap9004 PMID: 29404407
  110. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21. doi: 10.1126/science.1225829 PMID: 22745249
  111. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23. doi: 10.1126/science.1231143 PMID: 23287718
  112. Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121): 823-6. doi: 10.1126/science.1232033 PMID: 23287722
  113. Mendell JR, Rodino-Klapac LR. Duchenne muscular dystrophy: CRISPR/Cas9 treatment. Cell Res 2016; 26(5): 513-4. doi: 10.1038/cr.2016.28 PMID: 26926391
  114. Hagan M, Ashraf M, Kim I, Weintraub NL, Tang Y. Effective regeneration of dystrophic muscle using autologous iPSC-derived progenitors with CRISPR-Cas9 mediated precise correction. Med Hypotheses 2018; 110: 97-100. doi: 10.1016/j.mehy.2017.11.009 PMID: 29317080
  115. Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 2016; 351(6271): 400-3. doi: 10.1126/science.aad5725 PMID: 26721683
  116. Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016; 351(6271): 403-7. doi: 10.1126/science.aad5143 PMID: 26721684
  117. Tabebordbar M, Zhu K, Cheng JKW, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 2016; 351(6271): 407-11. doi: 10.1126/science.aad5177 PMID: 26721686
  118. Rees HA, Liu DR. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 2018; 19(12): 770-88. doi: 10.1038/s41576-018-0059-1 PMID: 30323312
  119. Sakata RC, Ishiguro S, Mori H, et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat Biotechnol 2020; 38(7): 865-9. doi: 10.1038/s41587-020-0509-0 PMID: 32483365
  120. Ryu SM, Koo T, Kim K, et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 2018; 36(6): 536-9. doi: 10.1038/nbt.4148 PMID: 29702637
  121. Hampton T. DNA prime editing: A new CRISPR-based method to correct most disease-causing mutations. JAMA 2020; 323(5): 405-6. doi: 10.1001/jama.2019.21827 PMID: 32016291
  122. Li Y, Chen J, Tsai SQ, Cheng Y. Easy-Prime: A machine learning–based prime editor design tool. Genome Biol 2021; 22(1): 235. doi: 10.1186/s13059-021-02458-0 PMID: 34412673
  123. England SB, Nicholson LVB, Johnson MA, et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 1990; 343(6254): 180-2. doi: 10.1038/343180a0 PMID: 2404210
  124. Wells DJ, Wells KE, Asante EA, et al. Expression of human full-length and minidystrophin in transgenic mdx mice: Implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet 1995; 4(8): 1245-50. doi: 10.1093/hmg/4.8.1245 PMID: 7581360
  125. Scott JM, Li S, Harper SQ, et al. Viral vectors for gene transfer of micro-, mini-, or full-length dystrophin. Neuromuscul Disord 2002; 12 (Suppl. 1): S23-9. doi: 10.1016/S0960-8966(02)00078-0 PMID: 12206791
  126. Fabb SA, Wells DJ, Serpente P, Dickson G. Adeno-associated virus vector gene transfer and sarcolemmal expression of a 144 kDa micro-dystrophin effectively restores the dystrophin-associated protein complex and inhibits myofibre degeneration in nude/mdx mice. Hum Mol Genet 2002; 11(7): 733-41. doi: 10.1093/hmg/11.7.733 PMID: 11929846
  127. Yue Y, Li Z, Harper SQ, Davisson RL, Chamberlain JS, Duan D. Microdystrophin gene therapy of cardiomyopathy restores dystrophin-glycoprotein complex and improves sarcolemma integrity in the mdx mouse heart. Circulation 2003; 108(13): 1626-32. doi: 10.1161/01.CIR.0000089371.11664.27 PMID: 12952841
  128. Duchenne. The pathology of paralysis with muscular degeneration (paralysie myosclerotique), or paralysis with apparent hypertrophy. BMJ 1867; 2(363): 541-2. doi: 10.1136/bmj.2.363.541 PMID: 20744949
  129. Olson EN. Toward the correction of muscular dystrophy by gene editing. Proc Natl Acad Sci USA 2021; 118(22): e2004840117. doi: 10.1073/pnas.2004840117 PMID: 34074727
  130. Wilton-Clark H, Yokota T. Antisense and gene therapy options for duchenne muscular dystrophy arising from mutations in the N-terminal hotspot. Genes (Basel) 2022; 13(2): 257. doi: 10.3390/genes13020257 PMID: 35205302
  131. Ilyinskii PO, Michaud AM, Rizzo GL, et al. ImmTOR nanoparticles enhance AAV transgene expression after initial and repeat dosing in a mouse model of methylmalonic acidemia. Mol Ther Methods Clin Dev 2021; 22: 279-92. doi: 10.1016/j.omtm.2021.06.015 PMID: 34485611
  132. Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: Implications for gene therapy using AAV vectors. Hum Gene Ther 2010; 21(6): 704-12. doi: 10.1089/hum.2009.182 PMID: 20095819
  133. Chicoine LG, Montgomery CL, Bremer WG, et al. Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery. Mol Ther 2014; 22(2): 338-47. doi: 10.1038/mt.2013.244 PMID: 24196577

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers