Isoliquiritin Ameliorates Ulcerative Colitis in Rats through Caspase 3/HMGB1/TLR4 Dependent Signaling Pathway

  • Authors: Miao Z.1, Gu M.2, Raza F.3, Zafar H.3, Huang J.4, Yang Y.5, Sulaiman M.6, Yan J.7, Xu Y.8
  • Affiliations:
    1. Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine
    2. Department of Nephrology, Changshu Hospital Affiliated to Nanjing University of Chinese medicine
    3. School of Pharmacy, Shanghai Jiao Tong University
    4. , Taizhou Hospital of Traditional Chinese Medicine
    5. School of Pharmacy, Jiangsu University
    6. School of Pharmacy, China Pharmaceutical University
    7. Key Laboratory for Metabolic Diseases in Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine
    8. Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine
  • Issue: Vol 24, No 1 (2024)
  • Pages: 73-92
  • Section: Life Sciences
  • URL: https://j-morphology.com/1566-5232/article/view/643933
  • DOI: https://doi.org/10.2174/1566523223666230731115236
  • ID: 643933

Cite item

Full Text

Abstract

Background:Isoliquiritin belongs to flavanol glycosides and has a strong antiinflammatory activity. This study sought to investigate the anti-inflammatory effect of isoliquiritin and its underlying mechanism.

Methods:The inflammatory (trinitro-benzene-sulfonic acid-TNBS-induced ulcerative colitis (UC)) model was established to ascertain the effect of isoliquiritin on the caspase-3/HMGB1/TLR4 pathway in rats. We also explored its protective effect on intestinal inflammation and its underlying mechanism using the LPS-induced inflammation model of Caco-2 cells. Besides, Deseq2 was used to analyze UCassociated protein levels.

Results:Isoliquiritin treatment significantly attenuated shortened colon length (induced by TNBS), disease activity index (DAI) score, and body weight loss in rats. A decrease in the levels of inflammatory mediators (IL-1β, I IL-4, L-6, IL-10, PGE2, and TNF-α), coupled with malondialdehyde (MDA) and superoxide dismutase (SOD), was observed in colon tissue and serum of rats after they have received isoliquiritin. Results of techniques (like western blotting, real-time PCR, immunohistochemistry, and immunofluorescence-IF) demonstrated the potential of isoliquiritin to decrease expressions of key genes in the TLR4 downstream pathways, viz., MyD88, IRAK1, TRAF6, NF-κB, p38, and JNK at mRNA and protein levels as well as inhibit HMGB1 expression, which is the upstream ligand of TLR4. Bioinformational analysis showed enteritis to be associated with a high expression of HMGB1, TLR4, and caspase-3.

Conclusion:Isoliquiritin could reduce intestinal inflammation and mucosal damage of TNBS-induced colitis in rats with a certain anti-UC effect. Meanwhile, isoliquiritin treatment also inhibited the expression of HMGB1, TLR4, and MyD88 in LPS-induced Caco-2 cells. These results indicated that isoliquiritin could ameliorate UC through the caspase-3/HMGB1/TLR4-dependent signaling pathway.

About the authors

Zhiwei Miao

Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine

Email: info@benthamscience.net

Mingjia Gu

Department of Nephrology, Changshu Hospital Affiliated to Nanjing University of Chinese medicine

Email: info@benthamscience.net

Faisal Raza

School of Pharmacy, Shanghai Jiao Tong University

Author for correspondence.
Email: info@benthamscience.net

Hajra Zafar

School of Pharmacy, Shanghai Jiao Tong University

Email: info@benthamscience.net

Jianyi Huang

, Taizhou Hospital of Traditional Chinese Medicine

Email: info@benthamscience.net

Yuhang Yang

School of Pharmacy, Jiangsu University

Email: info@benthamscience.net

Muhammad Sulaiman

School of Pharmacy, China Pharmaceutical University

Email: info@benthamscience.net

Jing Yan

Key Laboratory for Metabolic Diseases in Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

Yi Xu

Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Lee HJ, Song HJ, Jeong JH, Kim HU, Boo SJ, Na SY. Ophthalmologic manifestations in patients with inflammatory bowel disease. Intest Res 2017; 15(3): 380-7. doi: 10.5217/ir.2017.15.3.380 PMID: 28670235
  2. Czompa L, Barta Z, Ziad H, et al. Corneal manifestations of inflammatory bowel disease. Semin Ophthalmol 2019; 34(7-8): 543-50. doi: 10.1080/08820538.2019.1684525 PMID: 31657260
  3. Ciobica A, Balmus IM, Trifan A, Stanciu C. The implications of oxidative stress and antioxidant therapies in Inflammatory Bowel Disease: Clinical aspects and animal models. Saudi J Gastroenterol 2016; 22(1): 3-17. doi: 10.4103/1319-3767.173753 PMID: 26831601
  4. Su H, Kang Q, Wang H, et al. Changes in expression of p53 and inflammatory factors in patients with ulcerative colitis. Exp Ther Med 2019; 17(4): 2451-6. PMID: 30906432
  5. Gilmour SM, Chait P, Phillips MJ, Roberts EA. Ulcerative colitis, autoimmune hemolytic anemia and primary sclerosing cholangitis in a child. Can J Gastroenterol 1996; 10(5): 301-3. doi: 10.1155/1996/762589
  6. Guinet-Charpentier C, Champigneulle J, Williet N, Peyrin-Biroulet L, Morali A. The association of autoimmune diseases with pediatric ulcerative colitis does not influence its disease course. Scand J Gastroenterol 2016; 51(1): 33-40. doi: 10.3109/00365521.2015.1058415 PMID: 26152794
  7. Sung J, Sim C, Ock M, Oh I, Jeong K, Yoo C. Comparison of a 10-year cumulative age-standardized incidence rate of lung cancer among metropolitan cities in Korea (During the 2000–2009 period): Review of occupational and environmental hazards associated with lung cancer. Int J Environ Res Public Health 2018; 15(6): 1259. doi: 10.3390/ijerph15061259 PMID: 29899316
  8. Turhal NS. Savaş B, Çoşkun Ö, et al. Prevalence of K-Ras mutations in hepatocellular carcinoma: A Turkish Oncology Group pilot study. Mol Clin Oncol 2015; 3(6): 1275-9. doi: 10.3892/mco.2015.633 PMID: 26807232
  9. Wang YY, Zhao SH, Zheng CX, et al. Research progress of Huangqin Decoction in the treatment of ulcerative colitis. Elect J Clinic Med Literat 2019; 6(85): 69-70.
  10. Casas R, Sacanella E, Estruch R. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr Metab Immune Disord Drug Targets 2014; 14(4): 245-54. doi: 10.2174/1871530314666140922153350 PMID: 25244229
  11. Yang X. Relationship between Helicobacter pylori and Rosacea: Review and discussion. BMC Infect Dis 2018; 18(1): 318. doi: 10.1186/s12879-018-3232-4 PMID: 29996790
  12. Enyuan HU, Min Z, Jianming X, et al. The relationship between chronic stress and cortisol levels in patients with coronary heart disease. Adv Cardiovas Dis 2017; 38(01): 94-7.
  13. Taylor KD, Rotter JI, Elson CO, et al. Characterization of the CBir1 antigenic response for diagnosis and treatment of Crohn’s disease. WO2008141148A3, 2013.
  14. Yanai H, Ben-Shachar S, Baram L, et al. P655 Gene expression alterations suggest that ulcerative colitis patients after restorative proctocolectomy have ileal disease. J Crohn’s Colitis 2014; 8(5): S343-4. doi: 10.1016/S1873-9946(14)60774-1
  15. Zhao WC, Liu YD, Sha L. Progress in researches on immune mechanism of ulcerative colitis. Medical Recapitulate 2018; 24(22): 7.
  16. Van Deventer SJH. Review article: Targeting TNFα as a key cytokine in the inflammatory processes of Crohn’s disease - the mechanisms of action of infliximab. Aliment Pharmacol Ther 1999; 13(4) (Suppl. 4): 3-8. doi: 10.1046/j.1365-2036.1999.00024.x PMID: 10597333
  17. Sohun M, Shen H. The implication and potential applications of high-mobility group box 1 protein in breast cancer. Ann Transl Med 2016; 4(11): 217. doi: 10.21037/atm.2016.05.36 PMID: 27386491
  18. Zherebiatiev A, Kamyshnyi A. Expression levels of proinflammatory cytokines and NLRP3 inflammasome in an experimental model of oxazolone-induced colitis. Iran J Allergy Asthma Immunol 2016; 15(1): 39-45. PMID: 26996110
  19. Chi Z, Wang Z, Liang Q, Zhu Y, Du Q. Induction of cytokine production in cholesteatoma keratinocytes by extracellular high-mobility group box chromosomal protein 1 combined with DNA released by apoptotic cholesteatoma keratinocytes. Mol Cell Biochem 2015; 400(1-2): 189-200. doi: 10.1007/s11010-014-2275-0 PMID: 25416861
  20. Li Y, Gan C, Zhang S, et al. FIP200 is involved in murine pseudomonas infection by regulating HMGB1 intracellular translocation. Cell Physiol Biochem 2014; 33(6): 1733-44. doi: 10.1159/000362954 PMID: 24923305
  21. Tracey K, Parrish W. Methods for treating conditions mediated by the inflammatory cytokine cascade using GAPDH inhibitors. US8715658B2, 2012.
  22. Sevindik HG, Güvenalp Z. Karadayı M. Antimutagenic potentials of flavonoids from Achillea millefolium L. subsp. millefolium. Planta Medica 2016; 81(S 01): S1-S381.
  23. Zhang XD, Zhou S, Yin YC, et al. Analysis on the correlation between chalcone synthase gene polymorphism and content of liquiritin in licorice. Yao Xue Xue Bao 2018; 53(4): 13.
  24. Lee BH, Choi HS, Hong J. Roles of anti- and pro-oxidant potential of cinnamic acid and phenylpropanoid derivatives in modulating growth of cultured cells. Food Sci Biotechnol 2022; 31(4): 463-73. doi: 10.1007/s10068-022-01042-x PMID: 35464248
  25. Kuang PX, Bu YY. Anti-tumor effect and apoptosis mechanism of isoliquiritin. Central South Pharmacy 2015; 8: 5.
  26. Yu C, Zhang Y, Gao KX, et al. Serotonergically dependent antihyperalgesic and antiallodynic effects of isoliquiritin in a mouse model of neuropathic pain. Eur J Pharmacol 2020; 881: 173184. doi: 10.1016/j.ejphar.2020.173184 PMID: 32417324
  27. Liu Y, Xu X, Xu R, Zhang S. Renoprotective effects of isoliquiritin against cationic bovine serum albumin-induced membranous glomerulonephritis in experimental rat model through its anti-oxidative and anti-inflammatory properties. Drug Des Devel Ther 2019; 13: 3735-51. doi: 10.2147/DDDT.S213088 PMID: 31802848
  28. Quaglio AEV, Castilho ACS, Di Stasi LC. Experimental evidence of heparanase, Hsp70 and NF-κB gene expression on the response of anti-inflammatory drugs in TNBS-induced colonic inflammation. Life Sci 2015; 141: 179-87. doi: 10.1016/j.lfs.2015.09.023 PMID: 26434698
  29. Piovezani RG, Kane S. Alcohol use in patients with inflammatory bowel disease. Gastroenterol Hepatol 2021; 17(5): 211-25. PMID: 34924888
  30. Cannon AR, Kuprys PV, Cobb AN, et al. Alcohol enhances symptoms and propensity for infection in inflammatory bowel disease patients and a murine model of DSS-induced colitis. J Leukoc Biol 2018; 104(3): 543-55. doi: 10.1002/JLB.4MA1217-506R PMID: 29775230
  31. Suzuki T, Mizoshita T, Tanida S, et al. The efficacy of maintenance therapy after remission induction with tacrolimus in ulcerative colitis with and without previous tumor necrosis factor‐α inhibitor. JGH Open 2019; 3(3): 217-23. doi: 10.1002/jgh3.12140 PMID: 31276039
  32. Wu YP, Meng XS, Bao YR, Wang S. Pharmacokinetic study of four flavones of Glycyrrhiza in rat plasma using HPLC–MS. J Ethnopharmacol 2013; 148(1): 266-70. doi: 10.1016/j.jep.2013.04.024 PMID: 23643543
  33. Li YY, Jiang ZZ, Zhang L, et al. Characterization of metabolites of liquirtigenin in rats by uplc-q-tof/ms. Tianjin J Tradit Chin Med 2015; 32: 757-62.
  34. Oteiza PI, Fraga CG, Mills DA, Taft DH. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol Aspects Med 2018; 61: 41-9. doi: 10.1016/j.mam.2018.01.001 PMID: 29317252
  35. Li Y, Song W, Tong Y, et al. Isoliquiritin ameliorates depression by suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-κB axis. J Neuroinflammation 2021; 18(1): 1. doi: 10.1186/s12974-020-02040-8 PMID: 33402173
  36. Li W, Zhao T, Wu D, et al. Colorectal cancer in ulcerative colitis: mechanisms, surveillance and chemoprevention. Curr Oncol 2022; 29(9): 6091-114. doi: 10.3390/curroncol29090479 PMID: 36135048
  37. Tang Q, Tang QL. Effect of isoliquiritin on wound healing in scalded rats. Pak J Zool 2013; 53(3): 1161-4.
  38. Nakase H, Sato N, Mizuno N, Ikawa Y. The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun Rev 2022; 21(3): 103017. doi: 10.1016/j.autrev.2021.103017 PMID: 34902606
  39. Moradi-Marjaneh R, Hassanian SM, Hasanzadeh M, et al. Therapeutic potential of toll‐like receptors in treatment of gynecological cancers. IUBMB Life 2019; 71(5): 549-64. doi: 10.1002/iub.2011 PMID: 30729633
  40. Katare PB, Nizami HL, Paramesha B, Dinda AK, Banerjee SK. Activation of toll like receptor 4 (TLR4) promotes cardiomyocyte apoptosis through SIRT2 dependent p53 deacetylation. Sci Rep 2020; 10(1): 19232. doi: 10.1038/s41598-020-75301-4 PMID: 33159115
  41. Cari L, Rosati L, Leoncini G, et al. Association of GILZ with MUC2, TLR2, and TLR4 in Inflammatory Bowel Disease. Int J Mol Sci 2023; 24(3): 2235. doi: 10.3390/ijms24032235 PMID: 36768553
  42. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 2016; 14(1): 20-32. doi: 10.1038/nrmicro3552 PMID: 26499895
  43. Yang A, Fan H, Zhao Y, et al. An immune-stimulating proteoglycan from the medicinal mushroom Huaier up-regulates NF-κB and MAPK signaling via Toll-like receptor 4. J Biol Chem 2019; 294(8): 2628-5268. doi: 10.1074/jbc.RA118.005477 PMID: 30602571
  44. Feng Y, Cui Y, Gao JL, et al. Resveratrol attenuates neuronal autophagy and inflammatory injury by inhibiting the TLR4/NF-κB signaling pathway in experimental traumatic brain injury. Int J Mol Med 2016; 37(4): 921-30. doi: 10.3892/ijmm.2016.2495 PMID: 26936125
  45. Aldapa-Vega G, Moreno-Eutimio MA, Berlanga-Taylor AJ, et al. Structural variants of Salmonella Typhimurium lipopolysaccharide induce less dimerization of TLR4/MD-2 and reduced pro-inflammatory cytokine production in human monocytes. Mol Immunol 2019; 111: 43-52. doi: 10.1016/j.molimm.2019.03.003 PMID: 30959420
  46. Dunne A, Carpenter S, Brikos C, et al. IRAK1 and IRAK4 promote phosphorylation, ubiquitination, and degradation of MyD88 adaptor-like (Mal). J Biol Chem 2010; 285(24): 18276-82. doi: 10.1074/jbc.M109.098137 PMID: 20400509
  47. O’Neill LAJ, Golenbock D, Bowie AG. The history of Toll-like receptors — redefining innate immunity. Nat Rev Immunol 2013; 13(6): 453-60. doi: 10.1038/nri3446 PMID: 23681101
  48. Park JS, Svetkauskaite D, He Q, et al. Involvement of TLR2 and TLR4 in cellular activation by high mobility group box 1 protein (HMGB1). J Biol Chem 2004; 279(9): 7370-7. doi: 10.1074/jbc.M306793200 PMID: 14660645
  49. Vitali R, Palone F, Cucchiara S, et al. Dipotassium glycyrrhizate inhibits HMGB1-dependent inflammation and ameliorates colitis in mice. PLoS One 2013; 8(6): e66527. doi: 10.1371/journal.pone.0066527 PMID: 23840500
  50. Ding HS, Yang J, Chen P, et al. The HMGB1–TLR4 axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte apoptosis. Gene 2013; 527(1): 389-93. doi: 10.1016/j.gene.2013.05.041 PMID: 23727604

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers