Identification of Important Genes Associated with the Development of Atherosclerosis


Cite item

Full Text

Abstract

Atherosclerosis is one of the most important medical problems due to its prevalence and significant contribution to the structure of temporary and permanent disability and mortality. Atherosclerosis is a complex chain of events occurring in the vascular wall over many years. Disorders of lipid metabolism, inflammation, and impaired hemodynamics are important mechanisms of atherogenesis. A growing body of evidence strengthens the understanding of the role of genetic and epigenetic factors in individual predisposition and development of atherosclerosis and its clinical outcomes. In addition, hemodynamic changes, lipid metabolism abnormalities, and inflammation are closely related and have many overlapping links in regulation. A better study of these mechanisms may improve the quality of diagnosis and management of such patients.

About the authors

Stanislav Kotlyarov

Department of Nurse, Ryazan State Medical University named after Academician I.P. Pavlov

Author for correspondence.
Email: info@benthamscience.net

References

  1. Mozaffarian D. Global scourge of cardiovascular disease. J Am Coll Cardiol 2017; 70(1): 26-8. doi: 10.1016/j.jacc.2017.05.007 PMID: 28527667
  2. Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019. J Am Coll Cardiol 2020; 76(25): 2982-3021. doi: 10.1016/j.jacc.2020.11.010 PMID: 33309175
  3. Chen G, Farris MS, Cowling T, et al. Prevalence of atherosclerotic cardiovascular disease and subsequent major adverse cardiovascular events in Alberta, Canada: A real‐world evidence study. Clin Cardiol 2021; 44(11): 1613-20. doi: 10.1002/clc.23732 PMID: 34585767
  4. Kim H, Kim S, Han S, et al. Prevalence and incidence of atherosclerotic cardiovascular disease and its risk factors in Korea: A nationwide population-based study. BMC Public Health 2019; 19(1): 1112. doi: 10.1186/s12889-019-7439-0 PMID: 31412823
  5. Khera R, Valero-Elizondo J, Nasir K. Financial toxicity in atherosclerotic cardiovascular disease in the United States: Current state and future directions. J Am Heart Assoc 2020; 9(19): e017793. doi: 10.1161/JAHA.120.017793 PMID: 32924728
  6. Kumar A, Siddharth V, Singh SI, Narang R. Cost analysis of treating cardiovascular diseases in a super-specialty hospital. PLoS One 2022; Jan 5; 17(1): e0262190. doi: 10.1371/journal.pone.0262190IF:3.752Q2. PMID: 34986193 PMCID: PMC8730466
  7. Costa J, Alarcão J, Amaral-Silva A, et al. Atherosclerosis: The cost of illness in Portugal. Revista Portuguesa de Cardiologia (English Edition) 2021; 40(6): 409-19. doi: 10.1016/j.repce.2020.08.003 PMID: 34274081
  8. Kotlyarov S. Genetic and epigenetic regulation of lipoxygenase pathways and reverse cholesterol transport in atherogenesis. Genes (Basel) 2022; 13(8): 1474. doi: 10.3390/genes13081474 PMID: 36011386
  9. Kalinin RE, Suchkov IA, Chobanyan AA, Nikiforov AA, Shumskaya EI. Genetic predictors of an unfavorable course of obliterating atherosclerosis of lower limb arteries I.P. Pavlov Russian Medical Biological Herald 2021; 29(2): 251-6. doi: 10.17816/PAVLOVJ65383
  10. Fava C, Montagnana M. Atherosclerosis is an inflammatory disease which lacks a common anti-inflammatory therapy: How human genetics can help to this issue. A narrative review. Front Pharmacol 2018; 9: 55. doi: 10.3389/fphar.2018.00055 PMID: 29467655
  11. Lusis AJ, Mar R, Pajukanta P. Genetics of atherosclerosis. Annu Rev Genomics Hum Genet 2004; 5(1): 189-218. doi: 10.1146/annurev.genom.5.061903.175930 PMID: 15485348
  12. Aherrahrou R, Guo L, Nagraj VP, et al. Genetic regulation of atherosclerosis-relevant phenotypes in human vascular smooth muscle cells. Circ Res 2020; 127(12): 1552-65. doi: 10.1161/CIRCRESAHA.120.317415 PMID: 33040646
  13. Abi Khalil C. The emerging role of epigenetics in cardiovascular disease. Ther Adv Chronic Dis 2014; 5(4): 178-87. doi: 10.1177/2040622314529325 PMID: 24982752
  14. Shi Y, Zhang H, Huang S, et al. Epigenetic regulation in cardiovascular disease: Mechanisms and advances in clinical trials. Signal Transduct Target Ther 2022; 7(1): 200. doi: 10.1038/s41392-022-01055-2 PMID: 35752619
  15. Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic biomarkers in cardiovascular diseases. Front Genet 2019; 10: 950. doi: 10.3389/fgene.2019.00950 PMID: 31649728
  16. Zhang W, Song M, Qu J, Liu GH. Epigenetic modifications in cardiovascular aging and diseases. Circ Res 2018; 123(7): 773-86. doi: 10.1161/CIRCRESAHA.118.312497 PMID: 30355081
  17. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455(7209): 64-71. doi: 10.1038/nature07242 PMID: 18668037
  18. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 2018; 9: 402. doi: 10.3389/fendo.2018.00402 PMID: 30123182
  19. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15(8): 509-24. doi: 10.1038/nrm3838 PMID: 25027649
  20. Nisar S, Bhat AA, Singh M, et al. Insights into the role of CircRNAs: Biogenesis, characterization, functional, and clinical impact in human malignancies. Front Cell Dev Biol 2021; 9: 617281. doi: 10.3389/fcell.2021.617281 PMID: 33614648
  21. Verduci L, Tarcitano E, Strano S, Yarden Y, Blandino G. CircRNAs: Role in human diseases and potential use as biomarkers. Cell Death Dis 2021; 12(5): 468. doi: 10.1038/s41419-021-03743-3 PMID: 33976116
  22. Panda AC. Circular RNAs act as miRNA sponges. Adv Exp Med Biol 2018; 1087: 67-79. doi: 10.1007/978-981-13-1426-1_6 PMID: 30259358
  23. Fang Y. Circular RNAs as novel biomarkers with regulatory potency in human diseases. Future Sci OA 2018; 4(7): FSO314. doi: 10.4155/fsoa-2018-0036 PMID: 30112184
  24. Chen X, Yan CC, Zhang X, You ZH. Long non-coding RNAs and complex diseases: From experimental results to computational models. Brief Bioinform 2017; 18(4): 558-76. doi: 10.1093/bib/bbw060 PMID: 27345524 PMCID: PMC5862301
  25. Kung JTY, Colognori D, Lee JT. Long noncoding RNAs: Past, present, and future. Genetics 2013; 193(3): 651-69. doi: 10.1534/genetics.112.146704 PMID: 23463798
  26. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81(1): 145-66. doi: 10.1146/annurev-biochem-051410-092902 PMID: 22663078
  27. Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. Gene regulation by the act of long non-coding RNA transcription. BMC Biol 2013; 11(1): 59. doi: 10.1186/1741-7007-11-59 PMID: 23721193
  28. Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 2013; 20(3): 300-7. doi: 10.1038/nsmb.2480 PMID: 23463315
  29. Buja LM, Nikolai N. Anitschkow and the lipid hypothesis of atherosclerosis. Cardiovasc Pathol 2014; 23(3): 183-4. doi: 10.1016/j.carpath.2013.12.004 PMID: 24484612
  30. Konstantinov IE, Mejevoi N, Anichkov NM, Nikolai N. Anichkov and his theory of atherosclerosis. Tex Heart Inst J 2006; 33(4): 417-23. PMID: 17215962 PMID: 17215962
  31. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41(1): 111-88. doi: 10.1093/eurheartj/ehz455 PMID: 31504418
  32. Catapano AL, Ray KK, Tokgözoglu L. Prevention guidelines and EAS/ESC guidelines for the treatment of dyslipidaemias: A look to the future. Atherosclerosis 2022; 340: 51-2. doi: 10.1016/j.atherosclerosis.2021.11.021 PMID: 34863532
  33. Kotlyarov S, Kotlyarova A. Anti-inflammatory function of fatty acids and involvement of their metabolites in the resolution of inflammation in chronic obstructive pulmonary disease. Int J Mol Sci 2021; 22(23): 12803. doi: 10.3390/ijms222312803 PMID: 34884621
  34. Kotlyarov S, Kotlyarova A. Involvement of fatty acids and their metabolites in the development of inflammation in atherosclerosis. Int J Mol Sci 2022; 23(3): 1308. doi: 10.3390/ijms23031308 PMID: 35163232
  35. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119-31. doi: 10.1056/NEJMoa1707914 PMID: 28845751
  36. Frangos SG, Gahtan V, Sumpio B. Localization of atherosclerosis. Arch Surg 1999; 134(10): 1142-9. doi: 10.1001/archsurg.134.10.1142 PMID: 10522862
  37. Texon M. A hemodynamic concept of atherosclerosis, with particular reference to coronary occlusion. Arch Intern Med 1957; 99(3): 418-27. doi: 10.1001/archinte.1957.00260030100010 PMID: 13402247
  38. Prado CM, Ramos SG, Elias J Jr, Rossi MA. Turbulent blood flow plays an essential localizing role in the development of atherosclerotic lesions in experimentally induced hypercholesterolaemia in rats. Int J Exp Pathol 2008; 89(1): 72-80. doi: 10.1111/j.1365-2613.2007.00564.x PMID: 18197872
  39. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011; 91(1): 327-87. doi: 10.1152/physrev.00047.2009 PMID: 21248169
  40. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985; 5(3): 293-302. doi: 10.1161/01.ATV.5.3.293 PMID: 3994585
  41. Butler PJ. Mechanobiology of dynamic enzyme systems. APL Bioeng 2020; 4(1): 010907. doi: 10.1063/1.5133645 PMID: 32161834
  42. Saqr KM, Tupin S, Rashad S, et al. Physiologic blood flow is turbulent. Sci Rep 2020; 10(1): 15492. doi: 10.1038/s41598-020-72309-8 PMID: 32968087
  43. Papaioannou TG, Stefanadis C. Vascular wall shear stress: Basic principles and methods. Hellenic J Cardiol 2005; 46(1): 9-15. PMID: 15807389
  44. Nigro P, Abe J, Berk BC. Flow shear stress and atherosclerosis: A matter of site specificity. Antioxid Redox Signal 2011; 15(5): 1405-14. doi: 10.1089/ars.2010.3679 PMID: 21050140
  45. Ni CW, Qiu H, Rezvan A, et al. Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood 2010; 116(15): e66-73. doi: 10.1182/blood-2010-04-278192 PMID: 20551377
  46. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999; 282(21): 2035-42. doi: 10.1001/jama.282.21.2035 PMID: 10591386
  47. Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995; 75(3): 519-60. doi: 10.1152/physrev.1995.75.3.519 PMID: 7624393
  48. Barakat AI. Blood flow and arterial endothelial dysfunction: Mechanisms and implications. C R Phys 2013; 14(6): 479-96. doi: 10.1016/j.crhy.2013.05.003
  49. Campinho P, Vilfan A, Vermot J. Blood flow forces in shaping the vascular system: A focus on endothelial cell behavior. Front Physiol 2020; 11: 552. doi: 10.3389/fphys.2020.00552 PMID: 32581842
  50. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 1981; 103(3): 177-85. doi: 10.1115/1.3138276 PMID: 7278196
  51. Wechezak AR, Viggers RF, Sauvage LR. Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear stress. Lab Invest 1985; 53(6): 639-47. PMID: 4068668
  52. White GE, Fujiwara K. Expression and intracellular distribution of stress fibers in aortic endothelium. J Cell Biol 1986; 103(1): 63-70. doi: 10.1083/jcb.103.1.63 PMID: 3722269
  53. Langille BL, Graham JJ, Kim D, Gotlieb AI. Dynamics of shear-induced redistribution of F-actin in endothelial cells in vivo. Arterioscler Thromb 1991; 11(6): 1814-20. doi: 10.1161/01.ATV.11.6.1814 PMID: 1931883
  54. Wojciak-Stothard B, Ridley AJ. Shear stress–induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J Cell Biol 2003; 161(2): 429-39. doi: 10.1083/jcb.200210135 PMID: 12719476
  55. Noria S, Xu F, McCue S, Jones M, Gotlieb AI, Langille BL. Assembly and reorientation of stress fibers drives morphological changes to endothelial cells exposed to shear stress. Am J Pathol 2004; 164(4): 1211-23. doi: 10.1016/S0002-9440(10)63209-9 PMID: 15039210
  56. Sriram K, Laughlin JG, Rangamani P, Tartakovsky DM. Shear-induced nitric oxide production by endothelial cells. Biophys J 2016; 111(1): 208-21. doi: 10.1016/j.bpj.2016.05.034 PMID: 27410748
  57. Sun HJ, Wu ZY, Nie XW, Bian JS. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and Hydrogen Sulfide. Front Pharmacol 2020; 10: 1568. doi: 10.3389/fphar.2019.01568 PMID: 32038245
  58. Boulanger CM. Endothelium. Arterioscler Thromb Vasc Biol 2016; 36(4): e26-31. doi: 10.1161/ATVBAHA.116.306940 PMID: 27010027
  59. Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T, Jacobo-Albavera L. Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int J Mol Sci 2021; 22(8): 3850. doi: 10.3390/ijms22083850 PMID: 33917744
  60. Linton MF, Yancey PG, Davies SS, et al. The role of lipids and lipoproteins in atherosclerosis. Endotext. South Dartmouth (MA): MDText.com, Inc. 2000.
  61. Malekmohammad K, Bezsonov EE, Rafieian-Kopaei M. Role of lipid accumulation and inflammation in atherosclerosis: Focus on molecular and cellular mechanisms. Front Cardiovasc Med 2021; 8: 707529. doi: 10.3389/fcvm.2021.707529 PMID: 34552965
  62. Kotlyarov S. Diversity of lipid function in atherogenesis: A focus on endothelial mechanobiology. Int J Mol Sci 2021; 22(21): 11545. doi: 10.3390/ijms222111545 PMID: 34768974
  63. Kotlyarov S. Analysis of differentially expressed genes and signaling pathways involved in atherosclerosis and chronic obstructive pulmonary disease. Biomol Concepts 2022; 13(1): 34-54. doi: 10.1515/bmc-2022-0001 PMID: 35189051
  64. Ohashi R, Mu H, Wang X, Yao Q, Chen C. Reverse cholesterol transport and cholesterol efflux in atherosclerosis. QJM 2005; 98(12): 845-56. doi: 10.1093/qjmed/hci136 PMID: 16258026
  65. Rohatgi A. Reverse cholesterol transport and atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 39(1): 2-4. doi: 10.1161/ATVBAHA.118.311978 PMID: 30586333
  66. Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-mediated cholesterol efflux as promising targets in cardiovascular disease treatment. Pharmacol Rev 2020; 72(1): 152-90. doi: 10.1124/pr.119.017897 PMID: 31831519
  67. Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011; 364(2): 127-35. doi: 10.1056/NEJMoa1001689 PMID: 21226578
  68. Wang J, Xiao Q, Wang L, Wang Y, Wang D, Ding H. Role of ABCA1 in Cardiovascular Disease. J Pers Med 2022; 12(6): 1010. doi: 10.3390/jpm12061010 PMID: 35743794
  69. Yu XH, Tang CK. ABCA1, ABCG1, and cholesterol homeostasis. Adv Exp Med Biol 2022; 1377: 95-107. doi: 10.1007/978-981-19-1592-5_7 PMID: 35575923
  70. Yvan-Charvet L, Welch C, Pagler TA, et al. Increased inflammatory gene expression in ABC transporter-deficient macrophages: Free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation 2008; 118(18): 1837-47. doi: 10.1161/CIRCULATIONAHA.108.793869 PMID: 18852364
  71. Iatan I, Alrasadi K, Ruel I, Alwaili K, Genest J. Effect of ABCA1 mutations on risk for myocardial infarction. Curr Atheroscler Rep 2008; 10(5): 413-26. doi: 10.1007/s11883-008-0064-5 PMID: 18706283
  72. Qian H, Zhao X, Cao P, Lei J, Yan N, Gong X. Structure of the human lipid exporter ABCA1. Cell 2017; 169(7): 1228-39. e1210 doi: 10.1016/j.cell.2017.05.020
  73. Chai AB, Ammit AJ, Gelissen IC. Examining the role of ABC lipid transporters in pulmonary lipid homeostasis and inflammation. Respir Res 2017; 18(1): 41. doi: 10.1186/s12931-017-0526-9 PMID: 28241820
  74. Brunham LR, Singaraja RR, Hayden MR. Variations on a gene: Rare and common variants in ABCA1 and their impact on HDL cholesterol levels and atherosclerosis. Annu Rev Nutr 2006; 26(1): 105-29. doi: 10.1146/annurev.nutr.26.061505.111214 PMID: 16704350
  75. Porchay I, Péan F, Bellili N, et al. ABCA1 single nucleotide polymorphisms on high-density lipoprotein-cholesterol and overweight: the D.E.S.I.R. study. Obesity 2006; 14(11): 1874-9. doi: 10.1038/oby.2006.217 PMID: 17135600
  76. Mokuno J, Hishida A, Morita E, et al. ATP-binding cassette transporter A1 (ABCA1) R219K (G1051A, rs2230806) polymorphism and serum high-density lipoprotein cholesterol levels in a large Japanese population: Cross-sectional data from the Daiko Study. Endocr J 2015; 62(6): 543-9. doi: 10.1507/endocrj.EJ14-0577 PMID: 25877294
  77. Shi Z, Tian Y, Zhao Z, et al. Association between the ABCA1 (R219K) polymorphism and lipid profiles: A meta-analysis. Sci Rep 2021; 11(1): 21718. doi: 10.1038/s41598-021-00961-9 PMID: 34741058
  78. Karimian M, Momeni A, Farmohammadi A, Behjati M, Jafari M, Raygan F. Common gene polymorphism in ATP‐binding cassette transporter A1 and coronary artery disease: A genetic association study and a structural analysis. J Cell Biochem 2020; 121(5-6): 3345-57. doi: 10.1002/jcb.29606 PMID: 31943326
  79. Wang F, Ji Y, Chen X, et al. ABCA1 variants rs2230806 (R219K), rs4149313 (M8831I), and rs9282541 (R230C) are associated with susceptibility to coronary heart disease. J Clin Lab Anal 2019; 33(6): e22896. doi: 10.1002/jcla.22896 PMID: 31006134
  80. Abdel-Razek O, Sadananda SN, Li X, Cermakova L, Frohlich J, Brunham LR. Increased prevalence of clinical and subclinical atherosclerosis in patients with damaging mutations in ABCA1 or APOA1. J Clin Lipidol 2018; 12(1): 116-21. doi: 10.1016/j.jacl.2017.10.010 PMID: 29150341
  81. Song J, Jiang X, Cao Y, Juan J, Wu T, Hu Y. Interaction between an ATP-binding cassette A1 (ABCA1) variant and egg consumption for the risk of ischemic stroke and carotid atherosclerosis: A Family-based study in the Chinese Population. J Atheroscler Thromb 2019; 26(9): 835-45. doi: 10.5551/jat.46615 PMID: 30828007
  82. Kyriakou T, Hodgkinson C, Pontefract DE, et al. Genotypic effect of the -565C>T polymorphism in the ABCA1 gene promoter on ABCA1 expression and severity of atherosclerosis. Arterioscler Thromb Vasc Biol 2005; 25(2): 418-23. doi: 10.1161/01.ATV.0000149379.72018.20 PMID: 15528481
  83. Cenarro A, Artieda M, Castillo S, et al. A common variant in the ABCA1 gene is associated with a lower risk for premature coronary heart disease in familial hypercholesterolaemia. J Med Genet 2003; 40(3): 163-8. doi: 10.1136/jmg.40.3.163 PMID: 12624133
  84. Ghaznavi H, Aali E, Soltanpour MS. Association study of the ATP - Binding Cassette Transporter A1 (ABCA1) Rs2230806 genetic variation with lipid profile and coronary artery disease risk in an Iranian population. Open Access Maced J Med Sci 2018; 6(2): 274-9. doi: 10.3889/oamjms.2018.063 PMID: 29531587
  85. Ceccanti M, Cambieri C, Frasca V, et al. A novel mutation in ABCA1 gene causing tangier disease in an Italian family with uncommon neurological presentation. Front Neurol 2016; 7: 185. doi: 10.3389/fneur.2016.00185 PMID: 27853448
  86. Dash R, Ali MC, Rana ML, et al. Computational SNP analysis and molecular simulation revealed the most deleterious missense variants in the NBD1 domain of human ABCA1 transporter. Int J Mol Sci 2020; 21(20): 7606. doi: 10.3390/ijms21207606 PMID: 33066695
  87. MacLeod MJ, De Lange RP, Breen G, Meiklejohn D, Lemmon H, St Clair D. Lack of association between apolipoprotein E genoype and ischaemic stroke in a Scottish population. Eur J Clin Invest 2001; 31(7): 570-3. doi: 10.1046/j.1365-2362.2001.00851.x PMID: 11454010
  88. Li J, Wang LF, Li ZQ, Pan W. Effect of R219K polymorphism of the ABCA1 gene on the lipid-lowering effect of pravastatin in Chinese patients with coronary heart disease. Clin Exp Pharmacol Physiol 2009; 36(5-6): 567-70. doi: 10.1111/j.1440-1681.2008.05119.x PMID: 19673941
  89. Akao H, Polisecki E, Schaefer EJ, et al. ABCA1 gene variation and heart disease risk reduction in the elderly during pravastatin treatment. Atherosclerosis 2014; 235(1): 176-81. doi: 10.1016/j.atherosclerosis.2014.04.030 PMID: 24854628
  90. Benton JL, Ding J, Tsai MY, et al. Associations between two common polymorphisms in the ABCA1 gene and subclinical atherosclerosis: Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2007; 193(2): 352-60. doi: 10.1016/j.atherosclerosis.2006.06.024 PMID: 16879828
  91. He P, Gelissen IC, Ammit AJ. Regulation of ATP binding cassette transporter A1 (ABCA1) expression: cholesterol-dependent and independent signaling pathways with relevance to inflammatory lung disease. Respir Res 2020; 21(1): 250. doi: 10.1186/s12931-020-01515-9 PMID: 32977800
  92. Matsuo M. ABCA1 and ABCG1 as potential therapeutic targets for the prevention of atherosclerosis. J Pharmacol Sci 2022; 148(2): 197-203. doi: 10.1016/j.jphs.2021.11.005 PMID: 35063134
  93. An F, Liu C, Wang X, et al. Effect of ABCA1 promoter methylation on premature coronary artery disease and its relationship with inflammation. BMC Cardiovasc Disord 2021; 21(1): 78. doi: 10.1186/s12872-021-01894-x PMID: 33557767
  94. Guay SP, Légaré C, Houde AA, Mathieu P, Bossé Y, Bouchard L. Acetylsalicylic acid, aging and coronary artery disease are associated with ABCA1 DNA methylation in men. Clin Epigenetics 2014; 6(1): 14. doi: 10.1186/1868-7083-6-14 PMID: 25093045
  95. Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010; 328(5985): 1566-9. doi: 10.1126/science.1189123 PMID: 20466882
  96. Rayner KJ, Suárez Y, Dávalos A, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010; 328(5985): 1570-3. doi: 10.1126/science.1189862 PMID: 20466885
  97. Horie T, Baba O, Kuwabara Y, et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J Am Heart Assoc 2012; 1(6): e003376-6. doi: 10.1161/JAHA.112.003376 PMID: 23316322
  98. Rayner KJ, Sheedy FJ, Esau CC, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 2011; 121(7): 2921-31. doi: 10.1172/JCI57275 PMID: 21646721
  99. Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011; 478(7369): 404-7. doi: 10.1038/nature10486 PMID: 22012398
  100. Rottiers V, Obad S, Petri A, et al. Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR. Sci Transl Med 2013; 5(212): 212ra162. doi: 10.1126/scitranslmed.3006840
  101. Price NL, Rotllan N, Canfrán-Duque A, et al. Genetic dissection of the impact of miR-33a and miR-33b during the progression of atherosclerosis. Cell Rep 2017; 21(5): 1317-30. doi: 10.1016/j.celrep.2017.10.023 PMID: 29091769
  102. Marquart TJ, Allen RM, Ory DS, Baldán Á. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA 2010; 107(27): 12228-32. doi: 10.1073/pnas.1005191107 PMID: 20566875
  103. Adlakha YK, Khanna S, Singh R, Singh VP, Agrawal A, Saini N. Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRα expression and cholesterol homeostasis. Cell Death Dis 2013; 4(8): e780-0. doi: 10.1038/cddis.2013.301 PMID: 23990020
  104. Adlakha YK, Saini N. miR-128 exerts pro-apoptotic effect in a p53 transcription-dependent and -independent manner via PUMA-Bak axis. Cell Death Dis 2013; 4(3): e542-2. doi: 10.1038/cddis.2013.46 PMID: 23492773
  105. Hu YW, Hu YR, Zhao JY, et al. An agomir of miR-144-3p accelerates plaque formation through impairing reverse cholesterol transport and promoting pro-inflammatory cytokine production. PLoS One 2014; 9(4): e94997-7. doi: 10.1371/journal.pone.0094997 PMID: 24733347
  106. Wang Z, Zhang J, Zhang S, et al. MiR 30e and miR 92a are related to atherosclerosis by targeting ABCA1. Mol Med Rep 2019; 19(4): 3298-304. doi: 10.3892/mmr.2019.9983 PMID: 30816508
  107. Tan L, Liu L, Jiang Z, Hao X. Inhibition of microRNA-17-5p reduces the inflammation and lipid accumulation, and up-regulates ATP-binding cassette transporterA1 in atherosclerosis. J Pharmacol Sci 2019; 139(4): 280-8. doi: 10.1016/j.jphs.2018.11.012 PMID: 30850242
  108. Xu F, Shen L, Chen H, et al. circDENND1B participates in the antiatherosclerotic effect of IL-1β monoclonal antibody in mouse by promoting cholesterol Efflux via miR-17-5p/Abca1 Axis. Front Cell Dev Biol 2021; 9: 652032-2. doi: 10.3389/fcell.2021.652032 PMID: 33996813
  109. Nguyen MA, Hoang HD, Rasheed A, et al. miR-223 exerts translational control of proatherogenic genes in macrophages. Circ Res 2022; 131(1): 42-58. doi: 10.1161/CIRCRESAHA.121.319120 PMID: 35611698
  110. Wang J, Bai X, Song Q, et al. miR-223 inhibits lipid deposition and inflammation by suppressing toll-like receptor 4 signaling in macrophages. Int J Mol Sci 2015; 16(10): 24965-82. doi: 10.3390/ijms161024965 PMID: 26492242
  111. Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V. NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol 2012; 189(8): 4175-81. doi: 10.4049/jimmunol.1201516 PMID: 22984082
  112. Zhang S, Li L, Wang J, et al. Recent advances in the regulation of ABCA1 and ABCG1 by lncRNAs. Clin Chim Acta 2021; 516: 100-10. doi: 10.1016/j.cca.2021.01.019 PMID: 33545111
  113. Liu L, Tan L, Yao J, Yang L. Long non coding RNA MALAT1 regulates cholesterol accumulation in ox LDL induced macrophages via the microRNA 17 5p/ABCA1 axis. Mol Med Rep 2020; 21(4): 1761-70. doi: 10.3892/mmr.2020.10987 PMID: 32319624
  114. Zhou Q, Run Q, Li CY, Xiong XY, Wu XL. LncRNA MALAT1 promotes STAT3-mediated endothelial inflammation by counteracting the function of miR-590. Cytogenet Genome Res 2020; 160(10): 565-78. doi: 10.1159/000509811 PMID: 33022677
  115. Zhao ZW, Zhang M, Liao LX, et al. Long non-coding RNA PCA3 inhibits lipid accumulation and atherosclerosis through the miR-140-5p/RFX7/ABCA1 axis. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866(5): 158904. doi: 10.1016/j.bbalip.2021.158904 PMID: 33578049
  116. Cai C, Zhu H, Ning X, et al. LncRNA ENST00000602558.1 regulates ABCG1 expression and cholesterol efflux from vascular smooth muscle cells through a p65-dependent pathway. Atherosclerosis 2019; 285: 31-9. doi: 10.1016/j.atherosclerosis.2019.04.204 PMID: 31003090
  117. Sangwung P, Zhou G, Nayak L, et al. KLF2 and KLF4 control endothelial identity and vascular integrity. JCI Insight 2017; 2(4): e91700. doi: 10.1172/jci.insight.91700 PMID: 28239661
  118. Atkins GB, Jain MK. Role of Krüppel-like transcription factors in endothelial biology. Circ Res 2007; 100(12): 1686-95. doi: 10.1161/01.RES.0000267856.00713.0a PMID: 17585076
  119. Dekker RJ, van Soest S, Fontijn RD, et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2). Blood 2002; 100(5): 1689-98. doi: 10.1182/blood-2002-01-0046 PMID: 12176889
  120. Parmar KM, Larman HB, Dai G, et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 2005; 116(1): 49-58. doi: 10.1172/JCI24787 PMID: 16341264
  121. Hamik A, Lin Z, Kumar A, et al. Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem 2007; 282(18): 13769-79. doi: 10.1074/jbc.M700078200 PMID: 17339326
  122. Lin Z, Kumar A, SenBanerjee S, et al. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res 2005; 96(5): e48-57. doi: 10.1161/01.RES.0000159707.05637.a1 PMID: 15718498
  123. SenBanerjee S, Lin Z, Atkins GB, et al. KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 2004; 199(10): 1305-15. doi: 10.1084/jem.20031132 PMID: 15136591
  124. Dekker RJ, Boon RA, Rondaij MG, et al. KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood 2006; 107(11): 4354-63. doi: 10.1182/blood-2005-08-3465 PMID: 16455954
  125. Fledderus JO, van Thienen JV, Boon RA, et al. Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood 2007; 109(10): 4249-57. doi: 10.1182/blood-2006-07-036020 PMID: 17244683
  126. Yoshida T, Yamashita M, Horimai C, Hayashi M. Deletion of Krüppel-like factor 4 in endothelial and hematopoietic cells enhances neointimal formation following vascular injury. J Am Heart Assoc 2014; 3(1): e000622. doi: 10.1161/JAHA.113.000622 PMID: 24470523
  127. Zhang X, Wang L, Han Z, et al. KLF4 alleviates cerebral vascular injury by ameliorating vascular endothelial inflammation and regulating tight junction protein expression following ischemic stroke. J Neuroinflammation 2020; 17(1): 107. doi: 10.1186/s12974-020-01780-x PMID: 32264912
  128. Rasouli SJ, El-Brolosy M, Tsedeke AT, et al. The flow responsive transcription factor Klf2 is required for myocardial wall integrity by modulating Fgf signaling. eLife 2018; 7: e38889. doi: 10.7554/eLife.38889 PMID: 30592462
  129. Fontijn RD, Volger OL, van der Pouw-Kraan TC, et al. Expression of nitric oxide-transporting aquaporin-1 Is controlled by KLF2 and marks non-activated endothelium in vivo. PLoS One 2015; 10(12): e0145777. doi: 10.1371/journal.pone.0145777 PMID: 26717516
  130. Lee JS, Yu Q, Shin JT, et al. Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev Cell 2006; 11(6): 845-57. doi: 10.1016/j.devcel.2006.09.006 PMID: 17141159
  131. Denis JF, Diagbouga MR, Molica F, et al. KLF4-induced connexin40 expression contributes to arterial endothelial quiescence. Front Physiol 2019; 10: 80. doi: 10.3389/fphys.2019.00080 PMID: 30809154
  132. Hsieh PN, Zhou G, Yuan Y, et al. A conserved KLF-autophagy pathway modulates nematode lifespan and mammalian age-associated vascular dysfunction. Nat Commun 2017; 8(1): 914. doi: 10.1038/s41467-017-00899-5 PMID: 29030550
  133. Sweet DR, Lam C, Jain MK. Evolutionary protection of krüppel-like factors 2 and 4 in the development of the mature hemovascular system. Front Cardiovasc Med 2021; 8: 645719. doi: 10.3389/fcvm.2021.645719 PMID: 34079826
  134. Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 2012; 32(4): 979-87. doi: 10.1161/ATVBAHA.111.244053 PMID: 22267480
  135. Villarreal G Jr, Zhang Y, Larman HB, Gracia-Sancho J, Koo A, García-Cardeña G. Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells. Biochem Biophys Res Commun 2010; 391(1): 984-9. doi: 10.1016/j.bbrc.2009.12.002 PMID: 19968965
  136. Wu W, Xiao H, Laguna-Fernandez A, et al. Flow-dependent regulation of krüppel-like factor 2 is mediated by MicroRNA-92a. Circulation 2011; 124(5): 633-41. doi: 10.1161/CIRCULATIONAHA.110.005108 PMID: 21768538
  137. Loyer X, Potteaux S, Vion AC, et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res 2014; 114(3): 434-43. doi: 10.1161/CIRCRESAHA.114.302213 PMID: 24255059
  138. Chang YJ, Li YS, Wu CC, et al. Extracellular MicroRNA-92a mediates endothelial cell–macrophage communication. Arterioscler Thromb Vasc Biol 2019; 39(12): 2492-504. doi: 10.1161/ATVBAHA.119.312707 PMID: 31597449
  139. Liu Y, Li Q, Hosen MR, et al. Atherosclerotic conditions promote the packaging of functional MicroRNA-92a-3p into endothelial microvesicles. Circ Res 2019; 124(4): 575-87. doi: 10.1161/CIRCRESAHA.118.314010 PMID: 30582459
  140. Napoli C, Ignarro LJ. Polymorphisms in endothelial nitric oxide synthase and carotid artery atherosclerosis. J Clin Pathol 2006; 60(4): 341-4. doi: 10.1136/jcp.2006.040550 PMID: 16837626
  141. Cozma A, Fodor A, Orasan OH, et al. Pharmacogenetic implications of eNOS polymorphisms (Glu298Asp, T786C, 4b/4a) in cardiovascular drug therapy. In Vivo 2019; 33(4): 1051-8. doi: 10.21873/invivo.11573 PMID: 31280192
  142. Antoniades C, Tousoulis D, Vasiliadou C, et al. Genetic polymorphisms G894T on the eNOS gene is associated with endothelial function and vWF levels in premature myocardial infarction survivors. Int J Cardiol 2006; 107(1): 95-100. doi: 10.1016/j.ijcard.2005.02.039 PMID: 16337503
  143. Joshi MS, Mineo C, Shaul PW, Bauer JA. Biochemical consequences of the NOS3 Glu298Asp variation in human endothelium: altered caveolar localization and impaired response to shear. FASEB J 2007; 21(11): 2655-63. doi: 10.1096/fj.06-7088com PMID: 17449720
  144. Cam SF, Sekuri C, Tengiz I, et al. The G894T polymorphism on endothelial nitric oxide synthase gene is associated with premature coronary artery disease in a Turkish population. Thromb Res 2005; 116(4): 287-92. doi: 10.1016/j.thromres.2004.12.002 PMID: 16038712
  145. Diakite B, Hamzi K, Slassi I, et al. G894T endothelial nitric oxide synthase polymorphism and ischemic stroke in Morocco. Meta Gene 2014; 2: 349-57. doi: 10.1016/j.mgene.2014.04.003 PMID: 25606419
  146. Nassereddine S, Idrissi H, Habbal R, et al. The polymorphism G894 T of endothelial nitric oxide synthase (eNOS) gene is associated with susceptibility to essential hypertension (EH) in Morocco. BMC Med Genet 2018; 19(1): 127. doi: 10.1186/s12881-018-0638-1 PMID: 30053839
  147. Fatini C, Sofi F, Sticchi E, et al. eNOS G894T polymorphism as a mild predisposing factor for abdominal aortic aneurysm. J Vasc Surg 2005; 42(3): 415-9. doi: 10.1016/j.jvs.2005.05.044 PMID: 16171581
  148. Shyu HY, Chen MH, Hsieh YH, et al. Association of eNOS and Cav-1 gene polymorphisms with susceptibility risk of large artery atherosclerotic stroke. PLoS One 2017; 12(3): e0174110. doi: 10.1371/journal.pone.0174110 PMID: 28346478
  149. Abolhalaj M, Amoli MM, Amiri P. eNOS gene variant in patients with coronary artery disease. J Biomark 2013; 2013: 1-6. doi: 10.1155/2013/403783 PMID: 26317015
  150. Vasilakou M, Votteas V, Kasparian C, et al. Lack of association between endothelial nitric oxide synthase gene polymorphisms and risk of premature coronary artery disease in the Greek population. Acta Cardiol 2008; 63(5): 609-14. doi: 10.2143/AC.63.5.2033229 PMID: 19014005
  151. Qin J, Wang S, Xia C. microRNAs regulate nitric oxide release from endothelial cells by targeting NOS3. J Thromb Thrombolysis 2018; 46(3): 275-82. doi: 10.1007/s11239-018-1684-4 PMID: 29948755
  152. Sun HX, Zeng DY, Li RT, et al. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension 2012; 60(6): 1407-14. doi: 10.1161/HYPERTENSIONAHA.112.197301 PMID: 23108656
  153. Peng Q, Yin R, Zhu X, et al. miR-155 activates the NLRP3 inflammasome by regulating the MEK/ERK/NF-κB pathway in carotid atherosclerotic plaques in ApoE−/− mice. J Physiol Biochem 2022; 78(2): 365-75. doi: 10.1007/s13105-022-00871-y PMID: 35079982
  154. Yin R, Zhu X, Wang J, et al. MicroRNA-155 promotes the ox-LDL-induced activation of NLRP3 inflammasomes via the ERK1/2 pathway in THP-1 macrophages and aggravates atherosclerosis in ApoE−/− mice. Ann Palliat Med 2019; 8(5): 676-89. doi: 10.21037/apm.2019.10.11 PMID: 31865729
  155. Du F, Yu F, Wang Y, et al. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2014; 34(4): 759-67. doi: 10.1161/ATVBAHA.113.302701 PMID: 24504735
  156. Li X, Kong D, Chen H, et al. miR-155 acts as an anti-inflammatory factor in atherosclerosis-associated foam cell formation by repressing calcium-regulated heat stable protein 1. Sci Rep 2016; 6(1): 21789-9. doi: 10.1038/srep21789 PMID: 26899994
  157. Davenport AP, Hyndman KA, Dhaun N, et al. Endothelin. Pharmacol Rev 2016; 68(2): 357-418. doi: 10.1124/pr.115.011833 PMID: 26956245
  158. Kowalczyk A, Kleniewska P, Kolodziejczyk M, Skibska B, Goraca A. The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch Immunol Ther Exp 2015; 63(1): 41-52. doi: 10.1007/s00005-014-0310-1 PMID: 25288367
  159. Kuchan MJ, Frangos JA. Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am J Physiol 1993; 264(1 Pt 2): H150-6. doi: 10.1152/ajpheart.1993.264.1.H150 PMID: 8381608
  160. Achmad HT, Rao GS. Chemotaxis of human blood monocytes toward endothelin-1 and the influence of calcium channel blockers. Biochem Biophys Res Commun 1992; 189(2): 994-1000. doi: 10.1016/0006-291X(92)92302-E PMID: 1472072
  161. Cunningham ME, Huribal M, Bala RJ, McMillen MA. Endothelin-1 and endothelin-4 stimulate monocyte production of cytokines. Crit Care Med 1997; 25(6): 958-64. doi: 10.1097/00003246-199706000-00011 PMID: 9201047
  162. McMillen MA, Huribal M, Cunningham ME, Kumar R, Sumpio BE. Endothelin-1 increases intracellular calcium in human monocytes and causes production of interleukin-6. Crit Care Med 1995; 23(1): 34-40. doi: 10.1097/00003246-199501000-00009 PMID: 8001384
  163. Vargas-Alarcon G, Vallejo M, Posadas-Romero C, et al. The −974C>A (rs3087459) gene polymorphism in the endothelin gene (EDN1) is associated with risk of developing acute coronary syndrome in Mexican patients. Gene 2014; 542(2): 258-62. doi: 10.1016/j.gene.2013.09.003 PMID: 24035903
  164. Ahmed M, Rghigh A. Polymorphism in Endothelin-1 gene: An overview. Curr Clin Pharmacol 2016; 11(3): 191-210. doi: 10.2174/1574884711666160701000900 PMID: 27397091
  165. Chalghoum A, Noichri Y, Dandana A, et al. Relationship between the A(8002)G intronic polymorphism of pre-pro-endothelin-1 gene and the endothelin-1 concentration among Tunisian coronary patients. BMC Cardiovasc Disord 2015; 15(1): 152. doi: 10.1186/s12872-015-0142-x PMID: 26573609
  166. Li D, Yang P, Xiong Q, et al. MicroRNA-125a/b-5p inhibits endothelin-1 expression in vascular endothelial cells. J Hypertens 2010; 28(8): 1646-54. doi: 10.1097/HJH.0b013e32833a4922 PMID: 20531225
  167. Hao L, Wang X, Cheng J, et al. The up-regulation of endothelin-1 and down-regulation of miRNA-125a-5p, -155, and -199a/b-3p in human atherosclerotic coronary artery. Cardiovasc Pathol 2014; 23(4): 217-23. doi: 10.1016/j.carpath.2014.03.009 PMID: 24877885
  168. Li H, Sun B. Toll-like receptor 4 in atherosclerosis. J Cell Mol Med 2007; 11(1): 88-95. doi: 10.1111/j.1582-4934.2007.00011.x PMID: 17367503
  169. Vink A, Schoneveld AH, van der Meer JJ, et al. In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions. Circulation 2002; 106(15): 1985-90. doi: 10.1161/01.CIR.0000032146.75113.EE PMID: 12370224
  170. Edfeldt K, Swedenborg J, Hansson GK, Yan Z. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 2002; 105(10): 1158-61. doi: 10.1161/circ.105.10.1158 PMID: 11889007
  171. Otsui K, Inoue N, Kobayashi S, et al. Enhanced expression of TLR4 in smooth muscle cells in human atherosclerotic coronary arteries. Heart Vessels 2007; 22(6): 416-22. doi: 10.1007/s00380-007-1001-1 PMID: 18044001
  172. Sasu S, LaVerda D, Qureshi N, Golenbock DT, Beasley D. Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation. Circ Res 2001; 89(3): 244-50. doi: 10.1161/hh1501.094184 PMID: 11485974
  173. Stoll LL, Denning GM, Li W-G, et al. Regulation of endotoxin-induced proinflammatory activation in human coronary artery cells: Expression of functional membrane-bound CD14 by human coronary artery smooth muscle cells. J Immun 2004; 173(2): 1336-43. doi: 10.4049/jimmunol.173.2.1336
  174. Faure E, Thomas L, Xu H, Medvedev AE, Equils O, Arditi M. Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol 2001; 166(3): 2018-24. doi: 10.4049/jimmunol.166.3.2018 PMID: 11160251
  175. Xu XH, Shah PK, Faure E, et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 2001; 104(25): 3103-8. doi: 10.1161/hc5001.100631 PMID: 11748108
  176. Ruysschaert JM, Lonez C. Role of lipid microdomains in TLRmediated signalling. Biochim Biophys Acta Biomembr 2015; 1848(9): 1860-7. doi: 10.1016/j.bbamem.2015.03.014
  177. Lai L, Azzam KM, Lin WC, et al. MicroRNA-33 regulates the innate immune response via atp binding cassette transporter-mediated remodeling of membrane microdomains. J Biol Chem 2016; 291(37): 19651-60. doi: 10.1074/jbc.M116.723056 PMID: 27471270
  178. Takeishi Y, Kubota I. Role of Toll-like receptor mediated signaling pathway in ischemic heart. Front Biosci 2009; 14(7): 2553-8. doi: 10.2741/3397 PMID: 19273219
  179. Kolek MJ, Carlquist JF, Muhlestein JB, et al. Toll–like receptor 4 gene Asp299Gly polymorphism is associated with reductions in vascular inflammation, angiographic coronary artery disease, and clinical diabetes. Am Heart J 2004; 148(6): 1034-40. doi: 10.1016/j.ahj.2004.05.049 PMID: 15632890
  180. Incalcaterra E, Caruso M, Balistreri CR, et al. Role of genetic polymorphisms in myocardial infarction at young age. Clin Hemorheol Microcirc 2010; 46(4): 291-8. doi: 10.3233/CH-2010-1353 PMID: 21187577
  181. Kiechl S, Lorenz E, Reindl M, et al. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 2002; 347(3): 185-92. doi: 10.1056/NEJMoa012673 PMID: 12124407
  182. Zee RYL, Hegener HH, Gould J, Ridker PM. Toll-like receptor 4 Asp299Gly gene polymorphism and risk of atherothrombosis. Stroke 2005; 36(1): 154-7. doi: 10.1161/01.STR.0000149948.31879.f0 PMID: 15576653
  183. Koch W, Hoppmann P, Pfeufer A, Schömig A, Kastrati A. Toll-like receptor 4 gene polymorphisms and myocardial infarction: No association in a Caucasian population. Eur Heart J 2006; 27(21): 2524-9. doi: 10.1093/eurheartj/ehl231 PMID: 16954131
  184. Nebel A, Flachsbart F, Schäfer A, et al. Role of the toll-like receptor 4 polymorphism Asp299Gly in longevity and myocardial infarction in German men. Mech Ageing Dev 2007; 128(5-6): 409-11. doi: 10.1016/j.mad.2007.04.001 PMID: 17493663
  185. Džumhur A, Zibar L, Wagner J. Šimundić T, Dembić Z, Barbić J. Association studies of gene polymorphisms in toll-like receptors 2 and 4 in Croatian patients with acute myocardial infarction. Scand J Immunol 2012; 75(5): 517-23. doi: 10.1111/j.1365-3083.2012.02681.x PMID: 22229967
  186. Zhou L, Zheng D, Wang S, et al. Genetic association of Toll-like receptor 4 gene and coronary artery disease in a Chinese Han population. Springerplus 2016; 5(1): 1533-3. doi: 10.1186/s40064-016-3177-2 PMID: 27652106
  187. Yang K, He YS, Wang XQ, et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett 2011; 585(6): 854-60. doi: 10.1016/j.febslet.2011.02.009 PMID: 21329689
  188. Takahashi Y, Satoh M, Minami Y, Tabuchi T, Itoh T, Nakamura M. Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: Effect of renin–angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clin Sci 2010; 119(9): 395-405. doi: 10.1042/CS20100003 PMID: 20524934
  189. Cheng HS, Sivachandran N, Lau A, et al. Micro RNA ‐146 represses endothelial activation by inhibiting pro‐inflammatory pathways. EMBO Mol Med 2013; 5(7): 1017-34. doi: 10.1002/emmm.201202318 PMID: 23733368
  190. Jiang M, Xiang Y, Wang D, et al. Dysregulated expression of miR-146a contributes to age-related dysfunction of macrophages. Aging Cell 2012; 11(1): 29-40. doi: 10.1111/j.1474-9726.2011.00757.x PMID: 21981419
  191. Wang X, Sun Q, Hu W. Carvedilol protects against the H2O2-induced cell damages in rat myoblasts by regulating the Circ_NFIX/miR-125b-5p/TLR4 signal axis. J Cardiovasc Pharmacol 2021; 78(4): 604-14. doi: 10.1097/FJC.0000000000001095 PMID: 34173813
  192. Curtale G, Renzi TA, Mirolo M, et al. Multi-step regulation of the TLR4 pathway by the miR-125a~99b~let-7e cluster. Front Immunol 2018; 9: 2037-7. doi: 10.3389/fimmu.2018.02037 PMID: 30245693
  193. Subbarao K, Jala VR, Mathis S, et al. Role of leukotriene B4 receptors in the development of atherosclerosis: potential mechanisms. Arterioscler Thromb Vasc Biol 2004; 24(2): 369-75. doi: 10.1161/01.ATV.0000110503.16605.15 PMID: 14656734
  194. van den Borne P, van der Laan SW, Bovens SM, et al. Leukotriene B4 levels in human atherosclerotic plaques and abdominal aortic aneurysms. PLoS One 2014; 9(1): e86522-2. doi: 10.1371/journal.pone.0086522 PMID: 24475136
  195. Fredman G, Hellmann J, Proto JD, et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat Commun 2016; 7(1): 12859. doi: 10.1038/ncomms12859 PMID: 27659679
  196. Ivanov I, Kuhn H, Heydeck D. Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). Gene 2015; 573(1): 1-32. doi: 10.1016/j.gene.2015.07.073 PMID: 26216303
  197. Ivanov I, Heydeck D, Hofheinz K, et al. Molecular enzymology of lipoxygenases. Arch Biochem Biophys 2010; 503(2): 161-74. doi: 10.1016/j.abb.2010.08.016 PMID: 20801095
  198. Brock TG, Maydanski E, McNish RW, Peters-Golden M. Co-localization of leukotriene a4 hydrolase with 5-lipoxygenase in nuclei of alveolar macrophages and rat basophilic leukemia cells but not neutrophils. J Biol Chem 2001; 276(37): 35071-7. doi: 10.1074/jbc.M105676200 PMID: 11451962
  199. Luo M, Jones SM, Peters-Golden M, Brock TG. Nuclear localization of 5-lipoxygenase as a determinant of leukotriene B 4 synthetic capacity. Proc Natl Acad Sci USA 2003; 100(21): 12165-70. doi: 10.1073/pnas.2133253100 PMID: 14530386
  200. Fredman G, Ozcan L, Spolitu S, et al. Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. Proc Natl Acad Sci USA 2014; 111(40): 14530-5. doi: 10.1073/pnas.1410851111 PMID: 25246560
  201. Qiu H, Gabrielsen A, Agardh HE, et al. Expression of 5-lipoxygenase and leukotriene A4 hydrolase in human atherosclerotic lesions correlates with symptoms of plaque instability. Proc Natl Acad Sci 2006; 103(21): 8161-6. doi: 10.1073/pnas.0602414103 PMID: 16698924
  202. Spanbroek R, Gräbner R, Lötzer K, et al. Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc Natl Acad Sci 2003; 100(3): 1238-43. doi: 10.1073/pnas.242716099 PMID: 12552108
  203. Cipollone F, Mezzetti A, Fazia ML, et al. Association between 5-lipoxygenase expression and plaque instability in humans. Arterioscler Thromb Vasc Biol 2005; 25(8): 1665-70. doi: 10.1161/01.ATV.0000172632.96987.2d PMID: 15933245
  204. Mehrabian M, Allayee H, Wong J, et al. Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ Res 2002; 91(2): 120-6. doi: 10.1161/01.RES.0000028008.99774.7F PMID: 12142344
  205. Mehrabian M, Schulthess FT, Nebohacova M, et al. Identification of ALOX5 as a gene regulating adiposity and pancreatic function. Diabetologia 2008; 51(6): 978-88. doi: 10.1007/s00125-008-1002-3 PMID: 18421434
  206. Kain V, Halade GV. Abstract 14092: Arachidonate 5 lipoxygenase deficiency drives age-related obesity, macrophage dysfunction in cardiac repair, and omnipresence of inflammation. Circulation 2021; 144(S1): A14092-2. doi: 10.1161/circ.144.suppl_1.14092
  207. Blömer N, Pachel C, Hofmann U, et al. 5-Lipoxygenase facilitates healing after myocardial infarction. Basic Res Cardiol 2013; 108(4): 367-7. doi: 10.1007/s00395-013-0367-8 PMID: 23812248
  208. Adamek A, Jung S, Dienesch C, et al. Role of 5-lipoxygenase in myocardial ischemia-reperfusion injury in mice. Eur J Pharmacol 2007; 571(1): 51-4. doi: 10.1016/j.ejphar.2007.05.040 PMID: 17586489
  209. Tsai MY, Cao J, Steffen BT, et al. 5‐lipoxygenase gene variants are not associated with atherosclerosis or incident coronary heart disease in the multi‐ethnic study of atherosclerosis Cohort. J Am Heart Assoc 2016; 5(3): e002814. doi: 10.1161/JAHA.115.002814 PMID: 27025886
  210. Maznyczka A, Braund P, Mangino M, Samani NJ. Arachidonate 5-lipoxygenase (5-LO) promoter genotype and risk of myocardial infarction: A case–control study. Atherosclerosis 2008; 199(2): 328-32. doi: 10.1016/j.atherosclerosis.2007.11.027 PMID: 18179798
  211. González P, Reguero JR, Lozano I, Morís C, Coto E. A functional Sp1/Egr1-tandem repeat polymorphism in the 5-lipoxygenase gene is not associated with myocardial infarction. Int J Immunogenet 2007; 34(2): 127-30. doi: 10.1111/j.1744-313X.2007.00671.x PMID: 17373938
  212. Carlson CS, Heagerty PJ, Nord AS, et al. TagSNP evaluation for the association of 42 inflammation loci and vascular disease: evidence of IL6, FGB, ALOX5, NFKBIA, and IL4R loci effects. Hum Genet 2007; 121(1): 65-75. doi: 10.1007/s00439-006-0289-8 PMID: 17115186
  213. Dwyer JH, Allayee H, Dwyer KM, et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med 2004; 350(1): 29-37. doi: 10.1056/NEJMoa025079 PMID: 14702425
  214. Dincbas-Renqvist V, Pépin G, Rakonjac M, et al. Human Dicer C-terminus functions as a 5-lipoxygenase binding domain. Biochim Biophys Acta Gene Regul Mech 2009; 1789(2): 99-108. doi: 10.1016/j.bbagrm.2008.10.002 PMID: 19022417
  215. Rådmark O, Werz O, Steinhilber D, Samuelsson B. 5-Lipoxygenase: Regulation of expression and enzyme activity. Trends Biochem Sci 2007; 32(7): 332-41. doi: 10.1016/j.tibs.2007.06.002 PMID: 17576065
  216. Uebbing S, Kreiß M, Scholl F, et al. Modulation of microRNA processing by 5‐lipoxygenase. FASEB J 2021; 35(2): e21193. doi: 10.1096/fj.202002108R PMID: 33205517
  217. Pan Q, Ma C, Wang Y, et al. Microvesicles‐mediated communication between endothelial cells modulates, endothelial survival, and angiogenic function via transferring of miR‐125a‐5p. J Cell Biochem 2019; 120(3): 3160-72. doi: 10.1002/jcb.27581 PMID: 30272818
  218. Wang J, Wu Q, Yu J, Cao X, Xu Z. miR 125a 5p inhibits the expression of NLRP3 by targeting CCL4 in human vascular smooth muscle cells treated with ox LDL. Exp Ther Med 2019; 18(3): 1645-52. doi: 10.3892/etm.2019.7717 PMID: 31410121
  219. Chen T, Huang Z, Wang L, et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res 2009; 83(1): 131-9. doi: 10.1093/cvr/cvp121 PMID: 19377067
  220. Pan Q, Liao X, Liu H, et al. MicroRNA-125a-5p alleviates the deleterious effects of ox-LDL on multiple functions of human brain microvessel endothelial cells. Am J Physiol Cell Physiol 2017; 312(2): C119-30. doi: 10.1152/ajpcell.00296.2016 PMID: 27903586
  221. Busch S, Auth E, Scholl F, et al. 5-Lipoxygenase is a direct target of miR-19a-3p and miR-125b-5p. J Immunol 2015; 194(4): 1646-53. doi: 10.4049/jimmunol.1402163 PMID: 25589070
  222. Jia K, Shi P, Han X, Chen T, Tang H, Wang J. Diagnostic value of miR-30d-5p and miR-125b-5p in acute myocardial infarction. Mol Med Rep 2016; 14(1): 184-94. doi: 10.3892/mmr.2016.5246 PMID: 27176713
  223. Araujo NNF, Lin-Wang HT, Germano JF, et al. Dysregulation of microRNAs and target genes networks in human abdominal aortic aneurysm tissues. PLoS One 2019; 14(9): e0222782. doi: 10.1371/journal.pone.0222782 PMID: 31539405
  224. Wang W, Wang Y, Piao H, et al. Bioinformatics analysis reveals MicroRNA-193a-3p regulates ACTG2 to control phenotype switch in human vascular smooth muscle cells. Front Genet 2021; 11: 572707. doi: 10.3389/fgene.2020.572707 PMID: 33510768
  225. Recchiuti A, Krishnamoorthy S, Fredman G, Chiang N, Serhan CN. MicroRNAs in resolution of acute inflammation: Identification of novel resolvin Dl‐miRNA circuits. FASEB J 2011; 25(2): 544-60. doi: 10.1096/fj.10-169599 PMID: 20956612
  226. Ochs MJ, Steinhilber D, Suess B. MicroRNA involved in inflammation: Control of eicosanoid pathway. Front Pharmacol 2011; 2: 39-9. doi: 10.3389/fphar.2011.00039 PMID: 21811464
  227. Fredman G, Li Y, Dalli J, Chiang N, Serhan CN. Self-limited versus delayed resolution of acute inflammation: Temporal regulation of pro-resolving mediators and microRNA. Sci Rep 2012; 2(1): 639-9. doi: 10.1038/srep00639 PMID: 22957142
  228. Ouimet M, Ediriweera HN, Gundra UM, et al. MicroRNA-33–dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest 2015; 125(12): 4334-48. doi: 10.1172/JCI81676 PMID: 26517695
  229. Runtsch MC, Nelson MC, Lee SH, et al. Anti-inflammatory microRNA-146a protects mice from diet-induced metabolic disease. PLoS Genet 2019; 15(2): e1007970. doi: 10.1371/journal.pgen.1007970 PMID: 30768595
  230. Duroux-Richard I, Roubert C, Ammari M, et al. miR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics. Blood 2016; 128(26): 3125-36. doi: 10.1182/blood-2016-02-697003 PMID: 27702798
  231. Chaudhuri AA, So AYL, Sinha N, et al. MicroRNA-125b potentiates macrophage activation. J Immunol 2011; 187(10): 5062-8. doi: 10.4049/jimmunol.1102001 PMID: 22003200
  232. Chen X, Sun LG, Zhao Y. NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion. Brief Bioinform 2021; 22(1): 485-96. doi: 10.1093/bib/bbz159 PMID: 31927572
  233. Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: Taxonomy, trends and challenges of computational models. Brief Bioinform 2022; 23(5): bbac358. doi: 10.1093/bib/bbac358 PMID: 36056743
  234. Chen X, Xie D, Zhao Q, You ZH. MicroRNAs and complex diseases: From experimental results to computational models. Brief Bioinform 2019; 20(2): 515-39. doi: 10.1093/bib/bbx130 PMID: 29045685
  235. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2019; 47(D1): D155-62. doi: 10.1093/nar/gky1141 PMID: 30423142
  236. Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J. miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res 2016; 44(W1): W135-41. doi: 10.1093/nar/gkw288 PMID: 27105848
  237. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 2020; 48(D1): D127-31. doi: 10.1093/nar/gkz757 PMID: 31504780
  238. McGeary SE, Lin KS, Shi CY, et al. The biochemical basis of microRNA targeting efficacy. Science 2019; 366(6472): eaav1741. doi: 10.1126/science.aav1741 PMID: 31806698
  239. Huang HY, Lin YCD, Cui S, et al. miRTarBase update 2022: An informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 2022; 50(D1): D222-30. doi: 10.1093/nar/gkab1079 PMID: 34850920
  240. Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS. lncRNAdb: A reference database for long noncoding RNAs. Nucleic Acids Res 2011; 39(S1): D146-51. doi: 10.1093/nar/gkq1138 PMID: 21112873
  241. Zhao L, Wang J, Li Y, et al. NONCODEV6: An updated database dedicated to long non-coding RNA annotation in both animals and plants. Nucleic Acids Res 2021; 49(D1): D165-71. doi: 10.1093/nar/gkaa1046 PMID: 33196801
  242. Volders PJ, Anckaert J, Verheggen K, et al. LNCipedia 5: Towards a reference set of human long non-coding RNAs. Nucleic Acids Res 2019; 47(D1): D135-9. doi: 10.1093/nar/gky1031 PMID: 30371849
  243. Seifuddin F, Singh K, Suresh A, et al. lncRNAKB, a knowledgebase of tissue-specific functional annotation and trait association of long noncoding RNA. Sci Data 2020; 7(1): 326. doi: 10.1038/s41597-020-00659-z PMID: 33020484
  244. Li Z, Liu L, Jiang S, et al. LncExpDB: An expression database of human long non-coding RNAs. Nucleic Acids Res 2021; 49(D1): D962-8. doi: 10.1093/nar/gkaa850 PMID: 33045751
  245. Bao Z, Yang Z, Huang Z, Zhou Y, Cui Q, Dong D. LncRNADisease 2.0: An updated database of long non-coding RNA-associated diseases. Nucleic Acids Res 2019; 47(D1): D1034-7. doi: 10.1093/nar/gky905 PMID: 30285109
  246. Zhou B, Ji B, Liu K, et al. EVLncRNAs 2.0: An updated database of manually curated functional long non-coding RNAs validated by low-throughput experiments. Nucleic Acids Res 2021; 49(D1): D86-91. doi: 10.1093/nar/gkaa1076 PMID: 33221906
  247. Gao Y, Li X, Shang S, et al. LincSNP 3.0: An updated database for linking functional variants to human long non-coding RNAs, circular RNAs and their regulatory elements. Nucleic Acids Res 2021; 49(D1): D1244-50. doi: 10.1093/nar/gkaa1037 PMID: 33219661
  248. Wu W, Ji P, Zhao F. CircAtlas: An integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol 2020; 21(1): 101. doi: 10.1186/s13059-020-02018-y PMID: 32345360
  249. Liu M, Wang Q, Shen J, Yang BB, Ding X. Circbank: A comprehensive database for circRNA with standard nomenclature. RNA Biol 2019; 16(7): 899-905. doi: 10.1080/15476286.2019.1600395 PMID: 31023147
  250. Nunnally MH, Stull JT. Mammalian skeletal muscle myosin light chain kinases. A comparison by antiserum cross-reactivity. J Biol Chem 1984; 259(3): 1776-80. doi: 10.1016/S0021-9258(17)43475-2 PMID: 6546381
  251. Zhang W, Liu Y, Min Z, et al. circMine: A comprehensive database to integrate, analyze and visualize human disease–related circRNA transcriptome. Nucleic Acids Res 2022; 50(D1): D83-92. doi: 10.1093/nar/gkab809 PMID: 34530446
  252. Rophina M, Sharma D, Poojary M, Scaria V. Circad: A comprehensive manually curated resource of circular RNA associated with diseases. Database 2020; 2020: baaa019. doi: 10.1093/database/baaa019
  253. Dong R, Ma XK, Li GW, Yang L. CIRCpedia v2: An updated database for comprehensive circular RNA annotation and expression comparison. Genomics Proteomics Bioinformatics 2018; 16(4): 226-33. doi: 10.1016/j.gpb.2018.08.001 PMID: 30172046

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers