Identification of Important Genes Associated with the Development of Atherosclerosis
- Authors: Kotlyarov S.1
-
Affiliations:
- Department of Nurse, Ryazan State Medical University named after Academician I.P. Pavlov
- Issue: Vol 24, No 1 (2024)
- Pages: 29-45
- Section: Life Sciences
- URL: https://j-morphology.com/1566-5232/article/view/643923
- DOI: https://doi.org/10.2174/1566523223666230330091241
- ID: 643923
Cite item
Full Text
Abstract
Atherosclerosis is one of the most important medical problems due to its prevalence and significant contribution to the structure of temporary and permanent disability and mortality. Atherosclerosis is a complex chain of events occurring in the vascular wall over many years. Disorders of lipid metabolism, inflammation, and impaired hemodynamics are important mechanisms of atherogenesis. A growing body of evidence strengthens the understanding of the role of genetic and epigenetic factors in individual predisposition and development of atherosclerosis and its clinical outcomes. In addition, hemodynamic changes, lipid metabolism abnormalities, and inflammation are closely related and have many overlapping links in regulation. A better study of these mechanisms may improve the quality of diagnosis and management of such patients.
About the authors
Stanislav Kotlyarov
Department of Nurse, Ryazan State Medical University named after Academician I.P. Pavlov
Author for correspondence.
Email: info@benthamscience.net
References
- Mozaffarian D. Global scourge of cardiovascular disease. J Am Coll Cardiol 2017; 70(1): 26-8. doi: 10.1016/j.jacc.2017.05.007 PMID: 28527667
- Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 19902019. J Am Coll Cardiol 2020; 76(25): 2982-3021. doi: 10.1016/j.jacc.2020.11.010 PMID: 33309175
- Chen G, Farris MS, Cowling T, et al. Prevalence of atherosclerotic cardiovascular disease and subsequent major adverse cardiovascular events in Alberta, Canada: A real‐world evidence study. Clin Cardiol 2021; 44(11): 1613-20. doi: 10.1002/clc.23732 PMID: 34585767
- Kim H, Kim S, Han S, et al. Prevalence and incidence of atherosclerotic cardiovascular disease and its risk factors in Korea: A nationwide population-based study. BMC Public Health 2019; 19(1): 1112. doi: 10.1186/s12889-019-7439-0 PMID: 31412823
- Khera R, Valero-Elizondo J, Nasir K. Financial toxicity in atherosclerotic cardiovascular disease in the United States: Current state and future directions. J Am Heart Assoc 2020; 9(19): e017793. doi: 10.1161/JAHA.120.017793 PMID: 32924728
- Kumar A, Siddharth V, Singh SI, Narang R. Cost analysis of treating cardiovascular diseases in a super-specialty hospital. PLoS One 2022; Jan 5; 17(1): e0262190. doi: 10.1371/journal.pone.0262190IF:3.752Q2. PMID: 34986193 PMCID: PMC8730466
- Costa J, Alarcão J, Amaral-Silva A, et al. Atherosclerosis: The cost of illness in Portugal. Revista Portuguesa de Cardiologia (English Edition) 2021; 40(6): 409-19. doi: 10.1016/j.repce.2020.08.003 PMID: 34274081
- Kotlyarov S. Genetic and epigenetic regulation of lipoxygenase pathways and reverse cholesterol transport in atherogenesis. Genes (Basel) 2022; 13(8): 1474. doi: 10.3390/genes13081474 PMID: 36011386
- Kalinin RE, Suchkov IA, Chobanyan AA, Nikiforov AA, Shumskaya EI. Genetic predictors of an unfavorable course of obliterating atherosclerosis of lower limb arteries I.P. Pavlov Russian Medical Biological Herald 2021; 29(2): 251-6. doi: 10.17816/PAVLOVJ65383
- Fava C, Montagnana M. Atherosclerosis is an inflammatory disease which lacks a common anti-inflammatory therapy: How human genetics can help to this issue. A narrative review. Front Pharmacol 2018; 9: 55. doi: 10.3389/fphar.2018.00055 PMID: 29467655
- Lusis AJ, Mar R, Pajukanta P. Genetics of atherosclerosis. Annu Rev Genomics Hum Genet 2004; 5(1): 189-218. doi: 10.1146/annurev.genom.5.061903.175930 PMID: 15485348
- Aherrahrou R, Guo L, Nagraj VP, et al. Genetic regulation of atherosclerosis-relevant phenotypes in human vascular smooth muscle cells. Circ Res 2020; 127(12): 1552-65. doi: 10.1161/CIRCRESAHA.120.317415 PMID: 33040646
- Abi Khalil C. The emerging role of epigenetics in cardiovascular disease. Ther Adv Chronic Dis 2014; 5(4): 178-87. doi: 10.1177/2040622314529325 PMID: 24982752
- Shi Y, Zhang H, Huang S, et al. Epigenetic regulation in cardiovascular disease: Mechanisms and advances in clinical trials. Signal Transduct Target Ther 2022; 7(1): 200. doi: 10.1038/s41392-022-01055-2 PMID: 35752619
- Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic biomarkers in cardiovascular diseases. Front Genet 2019; 10: 950. doi: 10.3389/fgene.2019.00950 PMID: 31649728
- Zhang W, Song M, Qu J, Liu GH. Epigenetic modifications in cardiovascular aging and diseases. Circ Res 2018; 123(7): 773-86. doi: 10.1161/CIRCRESAHA.118.312497 PMID: 30355081
- Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455(7209): 64-71. doi: 10.1038/nature07242 PMID: 18668037
- OBrien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 2018; 9: 402. doi: 10.3389/fendo.2018.00402 PMID: 30123182
- Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15(8): 509-24. doi: 10.1038/nrm3838 PMID: 25027649
- Nisar S, Bhat AA, Singh M, et al. Insights into the role of CircRNAs: Biogenesis, characterization, functional, and clinical impact in human malignancies. Front Cell Dev Biol 2021; 9: 617281. doi: 10.3389/fcell.2021.617281 PMID: 33614648
- Verduci L, Tarcitano E, Strano S, Yarden Y, Blandino G. CircRNAs: Role in human diseases and potential use as biomarkers. Cell Death Dis 2021; 12(5): 468. doi: 10.1038/s41419-021-03743-3 PMID: 33976116
- Panda AC. Circular RNAs act as miRNA sponges. Adv Exp Med Biol 2018; 1087: 67-79. doi: 10.1007/978-981-13-1426-1_6 PMID: 30259358
- Fang Y. Circular RNAs as novel biomarkers with regulatory potency in human diseases. Future Sci OA 2018; 4(7): FSO314. doi: 10.4155/fsoa-2018-0036 PMID: 30112184
- Chen X, Yan CC, Zhang X, You ZH. Long non-coding RNAs and complex diseases: From experimental results to computational models. Brief Bioinform 2017; 18(4): 558-76. doi: 10.1093/bib/bbw060 PMID: 27345524 PMCID: PMC5862301
- Kung JTY, Colognori D, Lee JT. Long noncoding RNAs: Past, present, and future. Genetics 2013; 193(3): 651-69. doi: 10.1534/genetics.112.146704 PMID: 23463798
- Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81(1): 145-66. doi: 10.1146/annurev-biochem-051410-092902 PMID: 22663078
- Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. Gene regulation by the act of long non-coding RNA transcription. BMC Biol 2013; 11(1): 59. doi: 10.1186/1741-7007-11-59 PMID: 23721193
- Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 2013; 20(3): 300-7. doi: 10.1038/nsmb.2480 PMID: 23463315
- Buja LM, Nikolai N. Anitschkow and the lipid hypothesis of atherosclerosis. Cardiovasc Pathol 2014; 23(3): 183-4. doi: 10.1016/j.carpath.2013.12.004 PMID: 24484612
- Konstantinov IE, Mejevoi N, Anichkov NM, Nikolai N. Anichkov and his theory of atherosclerosis. Tex Heart Inst J 2006; 33(4): 417-23. PMID: 17215962 PMID: 17215962
- Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41(1): 111-88. doi: 10.1093/eurheartj/ehz455 PMID: 31504418
- Catapano AL, Ray KK, Tokgözoglu L. Prevention guidelines and EAS/ESC guidelines for the treatment of dyslipidaemias: A look to the future. Atherosclerosis 2022; 340: 51-2. doi: 10.1016/j.atherosclerosis.2021.11.021 PMID: 34863532
- Kotlyarov S, Kotlyarova A. Anti-inflammatory function of fatty acids and involvement of their metabolites in the resolution of inflammation in chronic obstructive pulmonary disease. Int J Mol Sci 2021; 22(23): 12803. doi: 10.3390/ijms222312803 PMID: 34884621
- Kotlyarov S, Kotlyarova A. Involvement of fatty acids and their metabolites in the development of inflammation in atherosclerosis. Int J Mol Sci 2022; 23(3): 1308. doi: 10.3390/ijms23031308 PMID: 35163232
- Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119-31. doi: 10.1056/NEJMoa1707914 PMID: 28845751
- Frangos SG, Gahtan V, Sumpio B. Localization of atherosclerosis. Arch Surg 1999; 134(10): 1142-9. doi: 10.1001/archsurg.134.10.1142 PMID: 10522862
- Texon M. A hemodynamic concept of atherosclerosis, with particular reference to coronary occlusion. Arch Intern Med 1957; 99(3): 418-27. doi: 10.1001/archinte.1957.00260030100010 PMID: 13402247
- Prado CM, Ramos SG, Elias J Jr, Rossi MA. Turbulent blood flow plays an essential localizing role in the development of atherosclerotic lesions in experimentally induced hypercholesterolaemia in rats. Int J Exp Pathol 2008; 89(1): 72-80. doi: 10.1111/j.1365-2613.2007.00564.x PMID: 18197872
- Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011; 91(1): 327-87. doi: 10.1152/physrev.00047.2009 PMID: 21248169
- Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985; 5(3): 293-302. doi: 10.1161/01.ATV.5.3.293 PMID: 3994585
- Butler PJ. Mechanobiology of dynamic enzyme systems. APL Bioeng 2020; 4(1): 010907. doi: 10.1063/1.5133645 PMID: 32161834
- Saqr KM, Tupin S, Rashad S, et al. Physiologic blood flow is turbulent. Sci Rep 2020; 10(1): 15492. doi: 10.1038/s41598-020-72309-8 PMID: 32968087
- Papaioannou TG, Stefanadis C. Vascular wall shear stress: Basic principles and methods. Hellenic J Cardiol 2005; 46(1): 9-15. PMID: 15807389
- Nigro P, Abe J, Berk BC. Flow shear stress and atherosclerosis: A matter of site specificity. Antioxid Redox Signal 2011; 15(5): 1405-14. doi: 10.1089/ars.2010.3679 PMID: 21050140
- Ni CW, Qiu H, Rezvan A, et al. Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood 2010; 116(15): e66-73. doi: 10.1182/blood-2010-04-278192 PMID: 20551377
- Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999; 282(21): 2035-42. doi: 10.1001/jama.282.21.2035 PMID: 10591386
- Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995; 75(3): 519-60. doi: 10.1152/physrev.1995.75.3.519 PMID: 7624393
- Barakat AI. Blood flow and arterial endothelial dysfunction: Mechanisms and implications. C R Phys 2013; 14(6): 479-96. doi: 10.1016/j.crhy.2013.05.003
- Campinho P, Vilfan A, Vermot J. Blood flow forces in shaping the vascular system: A focus on endothelial cell behavior. Front Physiol 2020; 11: 552. doi: 10.3389/fphys.2020.00552 PMID: 32581842
- Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 1981; 103(3): 177-85. doi: 10.1115/1.3138276 PMID: 7278196
- Wechezak AR, Viggers RF, Sauvage LR. Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear stress. Lab Invest 1985; 53(6): 639-47. PMID: 4068668
- White GE, Fujiwara K. Expression and intracellular distribution of stress fibers in aortic endothelium. J Cell Biol 1986; 103(1): 63-70. doi: 10.1083/jcb.103.1.63 PMID: 3722269
- Langille BL, Graham JJ, Kim D, Gotlieb AI. Dynamics of shear-induced redistribution of F-actin in endothelial cells in vivo. Arterioscler Thromb 1991; 11(6): 1814-20. doi: 10.1161/01.ATV.11.6.1814 PMID: 1931883
- Wojciak-Stothard B, Ridley AJ. Shear stressinduced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J Cell Biol 2003; 161(2): 429-39. doi: 10.1083/jcb.200210135 PMID: 12719476
- Noria S, Xu F, McCue S, Jones M, Gotlieb AI, Langille BL. Assembly and reorientation of stress fibers drives morphological changes to endothelial cells exposed to shear stress. Am J Pathol 2004; 164(4): 1211-23. doi: 10.1016/S0002-9440(10)63209-9 PMID: 15039210
- Sriram K, Laughlin JG, Rangamani P, Tartakovsky DM. Shear-induced nitric oxide production by endothelial cells. Biophys J 2016; 111(1): 208-21. doi: 10.1016/j.bpj.2016.05.034 PMID: 27410748
- Sun HJ, Wu ZY, Nie XW, Bian JS. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and Hydrogen Sulfide. Front Pharmacol 2020; 10: 1568. doi: 10.3389/fphar.2019.01568 PMID: 32038245
- Boulanger CM. Endothelium. Arterioscler Thromb Vasc Biol 2016; 36(4): e26-31. doi: 10.1161/ATVBAHA.116.306940 PMID: 27010027
- Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T, Jacobo-Albavera L. Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int J Mol Sci 2021; 22(8): 3850. doi: 10.3390/ijms22083850 PMID: 33917744
- Linton MF, Yancey PG, Davies SS, et al. The role of lipids and lipoproteins in atherosclerosis. Endotext. South Dartmouth (MA): MDText.com, Inc. 2000.
- Malekmohammad K, Bezsonov EE, Rafieian-Kopaei M. Role of lipid accumulation and inflammation in atherosclerosis: Focus on molecular and cellular mechanisms. Front Cardiovasc Med 2021; 8: 707529. doi: 10.3389/fcvm.2021.707529 PMID: 34552965
- Kotlyarov S. Diversity of lipid function in atherogenesis: A focus on endothelial mechanobiology. Int J Mol Sci 2021; 22(21): 11545. doi: 10.3390/ijms222111545 PMID: 34768974
- Kotlyarov S. Analysis of differentially expressed genes and signaling pathways involved in atherosclerosis and chronic obstructive pulmonary disease. Biomol Concepts 2022; 13(1): 34-54. doi: 10.1515/bmc-2022-0001 PMID: 35189051
- Ohashi R, Mu H, Wang X, Yao Q, Chen C. Reverse cholesterol transport and cholesterol efflux in atherosclerosis. QJM 2005; 98(12): 845-56. doi: 10.1093/qjmed/hci136 PMID: 16258026
- Rohatgi A. Reverse cholesterol transport and atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 39(1): 2-4. doi: 10.1161/ATVBAHA.118.311978 PMID: 30586333
- Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-mediated cholesterol efflux as promising targets in cardiovascular disease treatment. Pharmacol Rev 2020; 72(1): 152-90. doi: 10.1124/pr.119.017897 PMID: 31831519
- Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011; 364(2): 127-35. doi: 10.1056/NEJMoa1001689 PMID: 21226578
- Wang J, Xiao Q, Wang L, Wang Y, Wang D, Ding H. Role of ABCA1 in Cardiovascular Disease. J Pers Med 2022; 12(6): 1010. doi: 10.3390/jpm12061010 PMID: 35743794
- Yu XH, Tang CK. ABCA1, ABCG1, and cholesterol homeostasis. Adv Exp Med Biol 2022; 1377: 95-107. doi: 10.1007/978-981-19-1592-5_7 PMID: 35575923
- Yvan-Charvet L, Welch C, Pagler TA, et al. Increased inflammatory gene expression in ABC transporter-deficient macrophages: Free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation 2008; 118(18): 1837-47. doi: 10.1161/CIRCULATIONAHA.108.793869 PMID: 18852364
- Iatan I, Alrasadi K, Ruel I, Alwaili K, Genest J. Effect of ABCA1 mutations on risk for myocardial infarction. Curr Atheroscler Rep 2008; 10(5): 413-26. doi: 10.1007/s11883-008-0064-5 PMID: 18706283
- Qian H, Zhao X, Cao P, Lei J, Yan N, Gong X. Structure of the human lipid exporter ABCA1. Cell 2017; 169(7): 1228-39. e1210 doi: 10.1016/j.cell.2017.05.020
- Chai AB, Ammit AJ, Gelissen IC. Examining the role of ABC lipid transporters in pulmonary lipid homeostasis and inflammation. Respir Res 2017; 18(1): 41. doi: 10.1186/s12931-017-0526-9 PMID: 28241820
- Brunham LR, Singaraja RR, Hayden MR. Variations on a gene: Rare and common variants in ABCA1 and their impact on HDL cholesterol levels and atherosclerosis. Annu Rev Nutr 2006; 26(1): 105-29. doi: 10.1146/annurev.nutr.26.061505.111214 PMID: 16704350
- Porchay I, Péan F, Bellili N, et al. ABCA1 single nucleotide polymorphisms on high-density lipoprotein-cholesterol and overweight: the D.E.S.I.R. study. Obesity 2006; 14(11): 1874-9. doi: 10.1038/oby.2006.217 PMID: 17135600
- Mokuno J, Hishida A, Morita E, et al. ATP-binding cassette transporter A1 (ABCA1) R219K (G1051A, rs2230806) polymorphism and serum high-density lipoprotein cholesterol levels in a large Japanese population: Cross-sectional data from the Daiko Study. Endocr J 2015; 62(6): 543-9. doi: 10.1507/endocrj.EJ14-0577 PMID: 25877294
- Shi Z, Tian Y, Zhao Z, et al. Association between the ABCA1 (R219K) polymorphism and lipid profiles: A meta-analysis. Sci Rep 2021; 11(1): 21718. doi: 10.1038/s41598-021-00961-9 PMID: 34741058
- Karimian M, Momeni A, Farmohammadi A, Behjati M, Jafari M, Raygan F. Common gene polymorphism in ATP‐binding cassette transporter A1 and coronary artery disease: A genetic association study and a structural analysis. J Cell Biochem 2020; 121(5-6): 3345-57. doi: 10.1002/jcb.29606 PMID: 31943326
- Wang F, Ji Y, Chen X, et al. ABCA1 variants rs2230806 (R219K), rs4149313 (M8831I), and rs9282541 (R230C) are associated with susceptibility to coronary heart disease. J Clin Lab Anal 2019; 33(6): e22896. doi: 10.1002/jcla.22896 PMID: 31006134
- Abdel-Razek O, Sadananda SN, Li X, Cermakova L, Frohlich J, Brunham LR. Increased prevalence of clinical and subclinical atherosclerosis in patients with damaging mutations in ABCA1 or APOA1. J Clin Lipidol 2018; 12(1): 116-21. doi: 10.1016/j.jacl.2017.10.010 PMID: 29150341
- Song J, Jiang X, Cao Y, Juan J, Wu T, Hu Y. Interaction between an ATP-binding cassette A1 (ABCA1) variant and egg consumption for the risk of ischemic stroke and carotid atherosclerosis: A Family-based study in the Chinese Population. J Atheroscler Thromb 2019; 26(9): 835-45. doi: 10.5551/jat.46615 PMID: 30828007
- Kyriakou T, Hodgkinson C, Pontefract DE, et al. Genotypic effect of the -565C>T polymorphism in the ABCA1 gene promoter on ABCA1 expression and severity of atherosclerosis. Arterioscler Thromb Vasc Biol 2005; 25(2): 418-23. doi: 10.1161/01.ATV.0000149379.72018.20 PMID: 15528481
- Cenarro A, Artieda M, Castillo S, et al. A common variant in the ABCA1 gene is associated with a lower risk for premature coronary heart disease in familial hypercholesterolaemia. J Med Genet 2003; 40(3): 163-8. doi: 10.1136/jmg.40.3.163 PMID: 12624133
- Ghaznavi H, Aali E, Soltanpour MS. Association study of the ATP - Binding Cassette Transporter A1 (ABCA1) Rs2230806 genetic variation with lipid profile and coronary artery disease risk in an Iranian population. Open Access Maced J Med Sci 2018; 6(2): 274-9. doi: 10.3889/oamjms.2018.063 PMID: 29531587
- Ceccanti M, Cambieri C, Frasca V, et al. A novel mutation in ABCA1 gene causing tangier disease in an Italian family with uncommon neurological presentation. Front Neurol 2016; 7: 185. doi: 10.3389/fneur.2016.00185 PMID: 27853448
- Dash R, Ali MC, Rana ML, et al. Computational SNP analysis and molecular simulation revealed the most deleterious missense variants in the NBD1 domain of human ABCA1 transporter. Int J Mol Sci 2020; 21(20): 7606. doi: 10.3390/ijms21207606 PMID: 33066695
- MacLeod MJ, De Lange RP, Breen G, Meiklejohn D, Lemmon H, St Clair D. Lack of association between apolipoprotein E genoype and ischaemic stroke in a Scottish population. Eur J Clin Invest 2001; 31(7): 570-3. doi: 10.1046/j.1365-2362.2001.00851.x PMID: 11454010
- Li J, Wang LF, Li ZQ, Pan W. Effect of R219K polymorphism of the ABCA1 gene on the lipid-lowering effect of pravastatin in Chinese patients with coronary heart disease. Clin Exp Pharmacol Physiol 2009; 36(5-6): 567-70. doi: 10.1111/j.1440-1681.2008.05119.x PMID: 19673941
- Akao H, Polisecki E, Schaefer EJ, et al. ABCA1 gene variation and heart disease risk reduction in the elderly during pravastatin treatment. Atherosclerosis 2014; 235(1): 176-81. doi: 10.1016/j.atherosclerosis.2014.04.030 PMID: 24854628
- Benton JL, Ding J, Tsai MY, et al. Associations between two common polymorphisms in the ABCA1 gene and subclinical atherosclerosis: Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2007; 193(2): 352-60. doi: 10.1016/j.atherosclerosis.2006.06.024 PMID: 16879828
- He P, Gelissen IC, Ammit AJ. Regulation of ATP binding cassette transporter A1 (ABCA1) expression: cholesterol-dependent and independent signaling pathways with relevance to inflammatory lung disease. Respir Res 2020; 21(1): 250. doi: 10.1186/s12931-020-01515-9 PMID: 32977800
- Matsuo M. ABCA1 and ABCG1 as potential therapeutic targets for the prevention of atherosclerosis. J Pharmacol Sci 2022; 148(2): 197-203. doi: 10.1016/j.jphs.2021.11.005 PMID: 35063134
- An F, Liu C, Wang X, et al. Effect of ABCA1 promoter methylation on premature coronary artery disease and its relationship with inflammation. BMC Cardiovasc Disord 2021; 21(1): 78. doi: 10.1186/s12872-021-01894-x PMID: 33557767
- Guay SP, Légaré C, Houde AA, Mathieu P, Bossé Y, Bouchard L. Acetylsalicylic acid, aging and coronary artery disease are associated with ABCA1 DNA methylation in men. Clin Epigenetics 2014; 6(1): 14. doi: 10.1186/1868-7083-6-14 PMID: 25093045
- Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010; 328(5985): 1566-9. doi: 10.1126/science.1189123 PMID: 20466882
- Rayner KJ, Suárez Y, Dávalos A, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010; 328(5985): 1570-3. doi: 10.1126/science.1189862 PMID: 20466885
- Horie T, Baba O, Kuwabara Y, et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J Am Heart Assoc 2012; 1(6): e003376-6. doi: 10.1161/JAHA.112.003376 PMID: 23316322
- Rayner KJ, Sheedy FJ, Esau CC, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 2011; 121(7): 2921-31. doi: 10.1172/JCI57275 PMID: 21646721
- Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011; 478(7369): 404-7. doi: 10.1038/nature10486 PMID: 22012398
- Rottiers V, Obad S, Petri A, et al. Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR. Sci Transl Med 2013; 5(212): 212ra162. doi: 10.1126/scitranslmed.3006840
- Price NL, Rotllan N, Canfrán-Duque A, et al. Genetic dissection of the impact of miR-33a and miR-33b during the progression of atherosclerosis. Cell Rep 2017; 21(5): 1317-30. doi: 10.1016/j.celrep.2017.10.023 PMID: 29091769
- Marquart TJ, Allen RM, Ory DS, Baldán Á. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA 2010; 107(27): 12228-32. doi: 10.1073/pnas.1005191107 PMID: 20566875
- Adlakha YK, Khanna S, Singh R, Singh VP, Agrawal A, Saini N. Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRα expression and cholesterol homeostasis. Cell Death Dis 2013; 4(8): e780-0. doi: 10.1038/cddis.2013.301 PMID: 23990020
- Adlakha YK, Saini N. miR-128 exerts pro-apoptotic effect in a p53 transcription-dependent and -independent manner via PUMA-Bak axis. Cell Death Dis 2013; 4(3): e542-2. doi: 10.1038/cddis.2013.46 PMID: 23492773
- Hu YW, Hu YR, Zhao JY, et al. An agomir of miR-144-3p accelerates plaque formation through impairing reverse cholesterol transport and promoting pro-inflammatory cytokine production. PLoS One 2014; 9(4): e94997-7. doi: 10.1371/journal.pone.0094997 PMID: 24733347
- Wang Z, Zhang J, Zhang S, et al. MiR 30e and miR 92a are related to atherosclerosis by targeting ABCA1. Mol Med Rep 2019; 19(4): 3298-304. doi: 10.3892/mmr.2019.9983 PMID: 30816508
- Tan L, Liu L, Jiang Z, Hao X. Inhibition of microRNA-17-5p reduces the inflammation and lipid accumulation, and up-regulates ATP-binding cassette transporterA1 in atherosclerosis. J Pharmacol Sci 2019; 139(4): 280-8. doi: 10.1016/j.jphs.2018.11.012 PMID: 30850242
- Xu F, Shen L, Chen H, et al. circDENND1B participates in the antiatherosclerotic effect of IL-1β monoclonal antibody in mouse by promoting cholesterol Efflux via miR-17-5p/Abca1 Axis. Front Cell Dev Biol 2021; 9: 652032-2. doi: 10.3389/fcell.2021.652032 PMID: 33996813
- Nguyen MA, Hoang HD, Rasheed A, et al. miR-223 exerts translational control of proatherogenic genes in macrophages. Circ Res 2022; 131(1): 42-58. doi: 10.1161/CIRCRESAHA.121.319120 PMID: 35611698
- Wang J, Bai X, Song Q, et al. miR-223 inhibits lipid deposition and inflammation by suppressing toll-like receptor 4 signaling in macrophages. Int J Mol Sci 2015; 16(10): 24965-82. doi: 10.3390/ijms161024965 PMID: 26492242
- Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V. NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol 2012; 189(8): 4175-81. doi: 10.4049/jimmunol.1201516 PMID: 22984082
- Zhang S, Li L, Wang J, et al. Recent advances in the regulation of ABCA1 and ABCG1 by lncRNAs. Clin Chim Acta 2021; 516: 100-10. doi: 10.1016/j.cca.2021.01.019 PMID: 33545111
- Liu L, Tan L, Yao J, Yang L. Long non coding RNA MALAT1 regulates cholesterol accumulation in ox LDL induced macrophages via the microRNA 17 5p/ABCA1 axis. Mol Med Rep 2020; 21(4): 1761-70. doi: 10.3892/mmr.2020.10987 PMID: 32319624
- Zhou Q, Run Q, Li CY, Xiong XY, Wu XL. LncRNA MALAT1 promotes STAT3-mediated endothelial inflammation by counteracting the function of miR-590. Cytogenet Genome Res 2020; 160(10): 565-78. doi: 10.1159/000509811 PMID: 33022677
- Zhao ZW, Zhang M, Liao LX, et al. Long non-coding RNA PCA3 inhibits lipid accumulation and atherosclerosis through the miR-140-5p/RFX7/ABCA1 axis. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866(5): 158904. doi: 10.1016/j.bbalip.2021.158904 PMID: 33578049
- Cai C, Zhu H, Ning X, et al. LncRNA ENST00000602558.1 regulates ABCG1 expression and cholesterol efflux from vascular smooth muscle cells through a p65-dependent pathway. Atherosclerosis 2019; 285: 31-9. doi: 10.1016/j.atherosclerosis.2019.04.204 PMID: 31003090
- Sangwung P, Zhou G, Nayak L, et al. KLF2 and KLF4 control endothelial identity and vascular integrity. JCI Insight 2017; 2(4): e91700. doi: 10.1172/jci.insight.91700 PMID: 28239661
- Atkins GB, Jain MK. Role of Krüppel-like transcription factors in endothelial biology. Circ Res 2007; 100(12): 1686-95. doi: 10.1161/01.RES.0000267856.00713.0a PMID: 17585076
- Dekker RJ, van Soest S, Fontijn RD, et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2). Blood 2002; 100(5): 1689-98. doi: 10.1182/blood-2002-01-0046 PMID: 12176889
- Parmar KM, Larman HB, Dai G, et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 2005; 116(1): 49-58. doi: 10.1172/JCI24787 PMID: 16341264
- Hamik A, Lin Z, Kumar A, et al. Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem 2007; 282(18): 13769-79. doi: 10.1074/jbc.M700078200 PMID: 17339326
- Lin Z, Kumar A, SenBanerjee S, et al. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res 2005; 96(5): e48-57. doi: 10.1161/01.RES.0000159707.05637.a1 PMID: 15718498
- SenBanerjee S, Lin Z, Atkins GB, et al. KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 2004; 199(10): 1305-15. doi: 10.1084/jem.20031132 PMID: 15136591
- Dekker RJ, Boon RA, Rondaij MG, et al. KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood 2006; 107(11): 4354-63. doi: 10.1182/blood-2005-08-3465 PMID: 16455954
- Fledderus JO, van Thienen JV, Boon RA, et al. Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood 2007; 109(10): 4249-57. doi: 10.1182/blood-2006-07-036020 PMID: 17244683
- Yoshida T, Yamashita M, Horimai C, Hayashi M. Deletion of Krüppel-like factor 4 in endothelial and hematopoietic cells enhances neointimal formation following vascular injury. J Am Heart Assoc 2014; 3(1): e000622. doi: 10.1161/JAHA.113.000622 PMID: 24470523
- Zhang X, Wang L, Han Z, et al. KLF4 alleviates cerebral vascular injury by ameliorating vascular endothelial inflammation and regulating tight junction protein expression following ischemic stroke. J Neuroinflammation 2020; 17(1): 107. doi: 10.1186/s12974-020-01780-x PMID: 32264912
- Rasouli SJ, El-Brolosy M, Tsedeke AT, et al. The flow responsive transcription factor Klf2 is required for myocardial wall integrity by modulating Fgf signaling. eLife 2018; 7: e38889. doi: 10.7554/eLife.38889 PMID: 30592462
- Fontijn RD, Volger OL, van der Pouw-Kraan TC, et al. Expression of nitric oxide-transporting aquaporin-1 Is controlled by KLF2 and marks non-activated endothelium in vivo. PLoS One 2015; 10(12): e0145777. doi: 10.1371/journal.pone.0145777 PMID: 26717516
- Lee JS, Yu Q, Shin JT, et al. Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev Cell 2006; 11(6): 845-57. doi: 10.1016/j.devcel.2006.09.006 PMID: 17141159
- Denis JF, Diagbouga MR, Molica F, et al. KLF4-induced connexin40 expression contributes to arterial endothelial quiescence. Front Physiol 2019; 10: 80. doi: 10.3389/fphys.2019.00080 PMID: 30809154
- Hsieh PN, Zhou G, Yuan Y, et al. A conserved KLF-autophagy pathway modulates nematode lifespan and mammalian age-associated vascular dysfunction. Nat Commun 2017; 8(1): 914. doi: 10.1038/s41467-017-00899-5 PMID: 29030550
- Sweet DR, Lam C, Jain MK. Evolutionary protection of krüppel-like factors 2 and 4 in the development of the mature hemovascular system. Front Cardiovasc Med 2021; 8: 645719. doi: 10.3389/fcvm.2021.645719 PMID: 34079826
- Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 2012; 32(4): 979-87. doi: 10.1161/ATVBAHA.111.244053 PMID: 22267480
- Villarreal G Jr, Zhang Y, Larman HB, Gracia-Sancho J, Koo A, García-Cardeña G. Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells. Biochem Biophys Res Commun 2010; 391(1): 984-9. doi: 10.1016/j.bbrc.2009.12.002 PMID: 19968965
- Wu W, Xiao H, Laguna-Fernandez A, et al. Flow-dependent regulation of krüppel-like factor 2 is mediated by MicroRNA-92a. Circulation 2011; 124(5): 633-41. doi: 10.1161/CIRCULATIONAHA.110.005108 PMID: 21768538
- Loyer X, Potteaux S, Vion AC, et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res 2014; 114(3): 434-43. doi: 10.1161/CIRCRESAHA.114.302213 PMID: 24255059
- Chang YJ, Li YS, Wu CC, et al. Extracellular MicroRNA-92a mediates endothelial cellmacrophage communication. Arterioscler Thromb Vasc Biol 2019; 39(12): 2492-504. doi: 10.1161/ATVBAHA.119.312707 PMID: 31597449
- Liu Y, Li Q, Hosen MR, et al. Atherosclerotic conditions promote the packaging of functional MicroRNA-92a-3p into endothelial microvesicles. Circ Res 2019; 124(4): 575-87. doi: 10.1161/CIRCRESAHA.118.314010 PMID: 30582459
- Napoli C, Ignarro LJ. Polymorphisms in endothelial nitric oxide synthase and carotid artery atherosclerosis. J Clin Pathol 2006; 60(4): 341-4. doi: 10.1136/jcp.2006.040550 PMID: 16837626
- Cozma A, Fodor A, Orasan OH, et al. Pharmacogenetic implications of eNOS polymorphisms (Glu298Asp, T786C, 4b/4a) in cardiovascular drug therapy. In Vivo 2019; 33(4): 1051-8. doi: 10.21873/invivo.11573 PMID: 31280192
- Antoniades C, Tousoulis D, Vasiliadou C, et al. Genetic polymorphisms G894T on the eNOS gene is associated with endothelial function and vWF levels in premature myocardial infarction survivors. Int J Cardiol 2006; 107(1): 95-100. doi: 10.1016/j.ijcard.2005.02.039 PMID: 16337503
- Joshi MS, Mineo C, Shaul PW, Bauer JA. Biochemical consequences of the NOS3 Glu298Asp variation in human endothelium: altered caveolar localization and impaired response to shear. FASEB J 2007; 21(11): 2655-63. doi: 10.1096/fj.06-7088com PMID: 17449720
- Cam SF, Sekuri C, Tengiz I, et al. The G894T polymorphism on endothelial nitric oxide synthase gene is associated with premature coronary artery disease in a Turkish population. Thromb Res 2005; 116(4): 287-92. doi: 10.1016/j.thromres.2004.12.002 PMID: 16038712
- Diakite B, Hamzi K, Slassi I, et al. G894T endothelial nitric oxide synthase polymorphism and ischemic stroke in Morocco. Meta Gene 2014; 2: 349-57. doi: 10.1016/j.mgene.2014.04.003 PMID: 25606419
- Nassereddine S, Idrissi H, Habbal R, et al. The polymorphism G894 T of endothelial nitric oxide synthase (eNOS) gene is associated with susceptibility to essential hypertension (EH) in Morocco. BMC Med Genet 2018; 19(1): 127. doi: 10.1186/s12881-018-0638-1 PMID: 30053839
- Fatini C, Sofi F, Sticchi E, et al. eNOS G894T polymorphism as a mild predisposing factor for abdominal aortic aneurysm. J Vasc Surg 2005; 42(3): 415-9. doi: 10.1016/j.jvs.2005.05.044 PMID: 16171581
- Shyu HY, Chen MH, Hsieh YH, et al. Association of eNOS and Cav-1 gene polymorphisms with susceptibility risk of large artery atherosclerotic stroke. PLoS One 2017; 12(3): e0174110. doi: 10.1371/journal.pone.0174110 PMID: 28346478
- Abolhalaj M, Amoli MM, Amiri P. eNOS gene variant in patients with coronary artery disease. J Biomark 2013; 2013: 1-6. doi: 10.1155/2013/403783 PMID: 26317015
- Vasilakou M, Votteas V, Kasparian C, et al. Lack of association between endothelial nitric oxide synthase gene polymorphisms and risk of premature coronary artery disease in the Greek population. Acta Cardiol 2008; 63(5): 609-14. doi: 10.2143/AC.63.5.2033229 PMID: 19014005
- Qin J, Wang S, Xia C. microRNAs regulate nitric oxide release from endothelial cells by targeting NOS3. J Thromb Thrombolysis 2018; 46(3): 275-82. doi: 10.1007/s11239-018-1684-4 PMID: 29948755
- Sun HX, Zeng DY, Li RT, et al. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension 2012; 60(6): 1407-14. doi: 10.1161/HYPERTENSIONAHA.112.197301 PMID: 23108656
- Peng Q, Yin R, Zhu X, et al. miR-155 activates the NLRP3 inflammasome by regulating the MEK/ERK/NF-κB pathway in carotid atherosclerotic plaques in ApoE−/− mice. J Physiol Biochem 2022; 78(2): 365-75. doi: 10.1007/s13105-022-00871-y PMID: 35079982
- Yin R, Zhu X, Wang J, et al. MicroRNA-155 promotes the ox-LDL-induced activation of NLRP3 inflammasomes via the ERK1/2 pathway in THP-1 macrophages and aggravates atherosclerosis in ApoE−/− mice. Ann Palliat Med 2019; 8(5): 676-89. doi: 10.21037/apm.2019.10.11 PMID: 31865729
- Du F, Yu F, Wang Y, et al. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2014; 34(4): 759-67. doi: 10.1161/ATVBAHA.113.302701 PMID: 24504735
- Li X, Kong D, Chen H, et al. miR-155 acts as an anti-inflammatory factor in atherosclerosis-associated foam cell formation by repressing calcium-regulated heat stable protein 1. Sci Rep 2016; 6(1): 21789-9. doi: 10.1038/srep21789 PMID: 26899994
- Davenport AP, Hyndman KA, Dhaun N, et al. Endothelin. Pharmacol Rev 2016; 68(2): 357-418. doi: 10.1124/pr.115.011833 PMID: 26956245
- Kowalczyk A, Kleniewska P, Kolodziejczyk M, Skibska B, Goraca A. The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch Immunol Ther Exp 2015; 63(1): 41-52. doi: 10.1007/s00005-014-0310-1 PMID: 25288367
- Kuchan MJ, Frangos JA. Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am J Physiol 1993; 264(1 Pt 2): H150-6. doi: 10.1152/ajpheart.1993.264.1.H150 PMID: 8381608
- Achmad HT, Rao GS. Chemotaxis of human blood monocytes toward endothelin-1 and the influence of calcium channel blockers. Biochem Biophys Res Commun 1992; 189(2): 994-1000. doi: 10.1016/0006-291X(92)92302-E PMID: 1472072
- Cunningham ME, Huribal M, Bala RJ, McMillen MA. Endothelin-1 and endothelin-4 stimulate monocyte production of cytokines. Crit Care Med 1997; 25(6): 958-64. doi: 10.1097/00003246-199706000-00011 PMID: 9201047
- McMillen MA, Huribal M, Cunningham ME, Kumar R, Sumpio BE. Endothelin-1 increases intracellular calcium in human monocytes and causes production of interleukin-6. Crit Care Med 1995; 23(1): 34-40. doi: 10.1097/00003246-199501000-00009 PMID: 8001384
- Vargas-Alarcon G, Vallejo M, Posadas-Romero C, et al. The −974C>A (rs3087459) gene polymorphism in the endothelin gene (EDN1) is associated with risk of developing acute coronary syndrome in Mexican patients. Gene 2014; 542(2): 258-62. doi: 10.1016/j.gene.2013.09.003 PMID: 24035903
- Ahmed M, Rghigh A. Polymorphism in Endothelin-1 gene: An overview. Curr Clin Pharmacol 2016; 11(3): 191-210. doi: 10.2174/1574884711666160701000900 PMID: 27397091
- Chalghoum A, Noichri Y, Dandana A, et al. Relationship between the A(8002)G intronic polymorphism of pre-pro-endothelin-1 gene and the endothelin-1 concentration among Tunisian coronary patients. BMC Cardiovasc Disord 2015; 15(1): 152. doi: 10.1186/s12872-015-0142-x PMID: 26573609
- Li D, Yang P, Xiong Q, et al. MicroRNA-125a/b-5p inhibits endothelin-1 expression in vascular endothelial cells. J Hypertens 2010; 28(8): 1646-54. doi: 10.1097/HJH.0b013e32833a4922 PMID: 20531225
- Hao L, Wang X, Cheng J, et al. The up-regulation of endothelin-1 and down-regulation of miRNA-125a-5p, -155, and -199a/b-3p in human atherosclerotic coronary artery. Cardiovasc Pathol 2014; 23(4): 217-23. doi: 10.1016/j.carpath.2014.03.009 PMID: 24877885
- Li H, Sun B. Toll-like receptor 4 in atherosclerosis. J Cell Mol Med 2007; 11(1): 88-95. doi: 10.1111/j.1582-4934.2007.00011.x PMID: 17367503
- Vink A, Schoneveld AH, van der Meer JJ, et al. In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions. Circulation 2002; 106(15): 1985-90. doi: 10.1161/01.CIR.0000032146.75113.EE PMID: 12370224
- Edfeldt K, Swedenborg J, Hansson GK, Yan Z. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 2002; 105(10): 1158-61. doi: 10.1161/circ.105.10.1158 PMID: 11889007
- Otsui K, Inoue N, Kobayashi S, et al. Enhanced expression of TLR4 in smooth muscle cells in human atherosclerotic coronary arteries. Heart Vessels 2007; 22(6): 416-22. doi: 10.1007/s00380-007-1001-1 PMID: 18044001
- Sasu S, LaVerda D, Qureshi N, Golenbock DT, Beasley D. Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation. Circ Res 2001; 89(3): 244-50. doi: 10.1161/hh1501.094184 PMID: 11485974
- Stoll LL, Denning GM, Li W-G, et al. Regulation of endotoxin-induced proinflammatory activation in human coronary artery cells: Expression of functional membrane-bound CD14 by human coronary artery smooth muscle cells. J Immun 2004; 173(2): 1336-43. doi: 10.4049/jimmunol.173.2.1336
- Faure E, Thomas L, Xu H, Medvedev AE, Equils O, Arditi M. Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol 2001; 166(3): 2018-24. doi: 10.4049/jimmunol.166.3.2018 PMID: 11160251
- Xu XH, Shah PK, Faure E, et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 2001; 104(25): 3103-8. doi: 10.1161/hc5001.100631 PMID: 11748108
- Ruysschaert JM, Lonez C. Role of lipid microdomains in TLRmediated signalling. Biochim Biophys Acta Biomembr 2015; 1848(9): 1860-7. doi: 10.1016/j.bbamem.2015.03.014
- Lai L, Azzam KM, Lin WC, et al. MicroRNA-33 regulates the innate immune response via atp binding cassette transporter-mediated remodeling of membrane microdomains. J Biol Chem 2016; 291(37): 19651-60. doi: 10.1074/jbc.M116.723056 PMID: 27471270
- Takeishi Y, Kubota I. Role of Toll-like receptor mediated signaling pathway in ischemic heart. Front Biosci 2009; 14(7): 2553-8. doi: 10.2741/3397 PMID: 19273219
- Kolek MJ, Carlquist JF, Muhlestein JB, et al. Tolllike receptor 4 gene Asp299Gly polymorphism is associated with reductions in vascular inflammation, angiographic coronary artery disease, and clinical diabetes. Am Heart J 2004; 148(6): 1034-40. doi: 10.1016/j.ahj.2004.05.049 PMID: 15632890
- Incalcaterra E, Caruso M, Balistreri CR, et al. Role of genetic polymorphisms in myocardial infarction at young age. Clin Hemorheol Microcirc 2010; 46(4): 291-8. doi: 10.3233/CH-2010-1353 PMID: 21187577
- Kiechl S, Lorenz E, Reindl M, et al. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 2002; 347(3): 185-92. doi: 10.1056/NEJMoa012673 PMID: 12124407
- Zee RYL, Hegener HH, Gould J, Ridker PM. Toll-like receptor 4 Asp299Gly gene polymorphism and risk of atherothrombosis. Stroke 2005; 36(1): 154-7. doi: 10.1161/01.STR.0000149948.31879.f0 PMID: 15576653
- Koch W, Hoppmann P, Pfeufer A, Schömig A, Kastrati A. Toll-like receptor 4 gene polymorphisms and myocardial infarction: No association in a Caucasian population. Eur Heart J 2006; 27(21): 2524-9. doi: 10.1093/eurheartj/ehl231 PMID: 16954131
- Nebel A, Flachsbart F, Schäfer A, et al. Role of the toll-like receptor 4 polymorphism Asp299Gly in longevity and myocardial infarction in German men. Mech Ageing Dev 2007; 128(5-6): 409-11. doi: 10.1016/j.mad.2007.04.001 PMID: 17493663
- Dumhur A, Zibar L, Wagner J. imundić T, Dembić Z, Barbić J. Association studies of gene polymorphisms in toll-like receptors 2 and 4 in Croatian patients with acute myocardial infarction. Scand J Immunol 2012; 75(5): 517-23. doi: 10.1111/j.1365-3083.2012.02681.x PMID: 22229967
- Zhou L, Zheng D, Wang S, et al. Genetic association of Toll-like receptor 4 gene and coronary artery disease in a Chinese Han population. Springerplus 2016; 5(1): 1533-3. doi: 10.1186/s40064-016-3177-2 PMID: 27652106
- Yang K, He YS, Wang XQ, et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett 2011; 585(6): 854-60. doi: 10.1016/j.febslet.2011.02.009 PMID: 21329689
- Takahashi Y, Satoh M, Minami Y, Tabuchi T, Itoh T, Nakamura M. Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: Effect of reninangiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clin Sci 2010; 119(9): 395-405. doi: 10.1042/CS20100003 PMID: 20524934
- Cheng HS, Sivachandran N, Lau A, et al. Micro RNA ‐146 represses endothelial activation by inhibiting pro‐inflammatory pathways. EMBO Mol Med 2013; 5(7): 1017-34. doi: 10.1002/emmm.201202318 PMID: 23733368
- Jiang M, Xiang Y, Wang D, et al. Dysregulated expression of miR-146a contributes to age-related dysfunction of macrophages. Aging Cell 2012; 11(1): 29-40. doi: 10.1111/j.1474-9726.2011.00757.x PMID: 21981419
- Wang X, Sun Q, Hu W. Carvedilol protects against the H2O2-induced cell damages in rat myoblasts by regulating the Circ_NFIX/miR-125b-5p/TLR4 signal axis. J Cardiovasc Pharmacol 2021; 78(4): 604-14. doi: 10.1097/FJC.0000000000001095 PMID: 34173813
- Curtale G, Renzi TA, Mirolo M, et al. Multi-step regulation of the TLR4 pathway by the miR-125a~99b~let-7e cluster. Front Immunol 2018; 9: 2037-7. doi: 10.3389/fimmu.2018.02037 PMID: 30245693
- Subbarao K, Jala VR, Mathis S, et al. Role of leukotriene B4 receptors in the development of atherosclerosis: potential mechanisms. Arterioscler Thromb Vasc Biol 2004; 24(2): 369-75. doi: 10.1161/01.ATV.0000110503.16605.15 PMID: 14656734
- van den Borne P, van der Laan SW, Bovens SM, et al. Leukotriene B4 levels in human atherosclerotic plaques and abdominal aortic aneurysms. PLoS One 2014; 9(1): e86522-2. doi: 10.1371/journal.pone.0086522 PMID: 24475136
- Fredman G, Hellmann J, Proto JD, et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat Commun 2016; 7(1): 12859. doi: 10.1038/ncomms12859 PMID: 27659679
- Ivanov I, Kuhn H, Heydeck D. Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). Gene 2015; 573(1): 1-32. doi: 10.1016/j.gene.2015.07.073 PMID: 26216303
- Ivanov I, Heydeck D, Hofheinz K, et al. Molecular enzymology of lipoxygenases. Arch Biochem Biophys 2010; 503(2): 161-74. doi: 10.1016/j.abb.2010.08.016 PMID: 20801095
- Brock TG, Maydanski E, McNish RW, Peters-Golden M. Co-localization of leukotriene a4 hydrolase with 5-lipoxygenase in nuclei of alveolar macrophages and rat basophilic leukemia cells but not neutrophils. J Biol Chem 2001; 276(37): 35071-7. doi: 10.1074/jbc.M105676200 PMID: 11451962
- Luo M, Jones SM, Peters-Golden M, Brock TG. Nuclear localization of 5-lipoxygenase as a determinant of leukotriene B 4 synthetic capacity. Proc Natl Acad Sci USA 2003; 100(21): 12165-70. doi: 10.1073/pnas.2133253100 PMID: 14530386
- Fredman G, Ozcan L, Spolitu S, et al. Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. Proc Natl Acad Sci USA 2014; 111(40): 14530-5. doi: 10.1073/pnas.1410851111 PMID: 25246560
- Qiu H, Gabrielsen A, Agardh HE, et al. Expression of 5-lipoxygenase and leukotriene A4 hydrolase in human atherosclerotic lesions correlates with symptoms of plaque instability. Proc Natl Acad Sci 2006; 103(21): 8161-6. doi: 10.1073/pnas.0602414103 PMID: 16698924
- Spanbroek R, Gräbner R, Lötzer K, et al. Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc Natl Acad Sci 2003; 100(3): 1238-43. doi: 10.1073/pnas.242716099 PMID: 12552108
- Cipollone F, Mezzetti A, Fazia ML, et al. Association between 5-lipoxygenase expression and plaque instability in humans. Arterioscler Thromb Vasc Biol 2005; 25(8): 1665-70. doi: 10.1161/01.ATV.0000172632.96987.2d PMID: 15933245
- Mehrabian M, Allayee H, Wong J, et al. Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ Res 2002; 91(2): 120-6. doi: 10.1161/01.RES.0000028008.99774.7F PMID: 12142344
- Mehrabian M, Schulthess FT, Nebohacova M, et al. Identification of ALOX5 as a gene regulating adiposity and pancreatic function. Diabetologia 2008; 51(6): 978-88. doi: 10.1007/s00125-008-1002-3 PMID: 18421434
- Kain V, Halade GV. Abstract 14092: Arachidonate 5 lipoxygenase deficiency drives age-related obesity, macrophage dysfunction in cardiac repair, and omnipresence of inflammation. Circulation 2021; 144(S1): A14092-2. doi: 10.1161/circ.144.suppl_1.14092
- Blömer N, Pachel C, Hofmann U, et al. 5-Lipoxygenase facilitates healing after myocardial infarction. Basic Res Cardiol 2013; 108(4): 367-7. doi: 10.1007/s00395-013-0367-8 PMID: 23812248
- Adamek A, Jung S, Dienesch C, et al. Role of 5-lipoxygenase in myocardial ischemia-reperfusion injury in mice. Eur J Pharmacol 2007; 571(1): 51-4. doi: 10.1016/j.ejphar.2007.05.040 PMID: 17586489
- Tsai MY, Cao J, Steffen BT, et al. 5‐lipoxygenase gene variants are not associated with atherosclerosis or incident coronary heart disease in the multi‐ethnic study of atherosclerosis Cohort. J Am Heart Assoc 2016; 5(3): e002814. doi: 10.1161/JAHA.115.002814 PMID: 27025886
- Maznyczka A, Braund P, Mangino M, Samani NJ. Arachidonate 5-lipoxygenase (5-LO) promoter genotype and risk of myocardial infarction: A casecontrol study. Atherosclerosis 2008; 199(2): 328-32. doi: 10.1016/j.atherosclerosis.2007.11.027 PMID: 18179798
- González P, Reguero JR, Lozano I, Morís C, Coto E. A functional Sp1/Egr1-tandem repeat polymorphism in the 5-lipoxygenase gene is not associated with myocardial infarction. Int J Immunogenet 2007; 34(2): 127-30. doi: 10.1111/j.1744-313X.2007.00671.x PMID: 17373938
- Carlson CS, Heagerty PJ, Nord AS, et al. TagSNP evaluation for the association of 42 inflammation loci and vascular disease: evidence of IL6, FGB, ALOX5, NFKBIA, and IL4R loci effects. Hum Genet 2007; 121(1): 65-75. doi: 10.1007/s00439-006-0289-8 PMID: 17115186
- Dwyer JH, Allayee H, Dwyer KM, et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med 2004; 350(1): 29-37. doi: 10.1056/NEJMoa025079 PMID: 14702425
- Dincbas-Renqvist V, Pépin G, Rakonjac M, et al. Human Dicer C-terminus functions as a 5-lipoxygenase binding domain. Biochim Biophys Acta Gene Regul Mech 2009; 1789(2): 99-108. doi: 10.1016/j.bbagrm.2008.10.002 PMID: 19022417
- Rådmark O, Werz O, Steinhilber D, Samuelsson B. 5-Lipoxygenase: Regulation of expression and enzyme activity. Trends Biochem Sci 2007; 32(7): 332-41. doi: 10.1016/j.tibs.2007.06.002 PMID: 17576065
- Uebbing S, Kreiß M, Scholl F, et al. Modulation of microRNA processing by 5‐lipoxygenase. FASEB J 2021; 35(2): e21193. doi: 10.1096/fj.202002108R PMID: 33205517
- Pan Q, Ma C, Wang Y, et al. Microvesicles‐mediated communication between endothelial cells modulates, endothelial survival, and angiogenic function via transferring of miR‐125a‐5p. J Cell Biochem 2019; 120(3): 3160-72. doi: 10.1002/jcb.27581 PMID: 30272818
- Wang J, Wu Q, Yu J, Cao X, Xu Z. miR 125a 5p inhibits the expression of NLRP3 by targeting CCL4 in human vascular smooth muscle cells treated with ox LDL. Exp Ther Med 2019; 18(3): 1645-52. doi: 10.3892/etm.2019.7717 PMID: 31410121
- Chen T, Huang Z, Wang L, et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res 2009; 83(1): 131-9. doi: 10.1093/cvr/cvp121 PMID: 19377067
- Pan Q, Liao X, Liu H, et al. MicroRNA-125a-5p alleviates the deleterious effects of ox-LDL on multiple functions of human brain microvessel endothelial cells. Am J Physiol Cell Physiol 2017; 312(2): C119-30. doi: 10.1152/ajpcell.00296.2016 PMID: 27903586
- Busch S, Auth E, Scholl F, et al. 5-Lipoxygenase is a direct target of miR-19a-3p and miR-125b-5p. J Immunol 2015; 194(4): 1646-53. doi: 10.4049/jimmunol.1402163 PMID: 25589070
- Jia K, Shi P, Han X, Chen T, Tang H, Wang J. Diagnostic value of miR-30d-5p and miR-125b-5p in acute myocardial infarction. Mol Med Rep 2016; 14(1): 184-94. doi: 10.3892/mmr.2016.5246 PMID: 27176713
- Araujo NNF, Lin-Wang HT, Germano JF, et al. Dysregulation of microRNAs and target genes networks in human abdominal aortic aneurysm tissues. PLoS One 2019; 14(9): e0222782. doi: 10.1371/journal.pone.0222782 PMID: 31539405
- Wang W, Wang Y, Piao H, et al. Bioinformatics analysis reveals MicroRNA-193a-3p regulates ACTG2 to control phenotype switch in human vascular smooth muscle cells. Front Genet 2021; 11: 572707. doi: 10.3389/fgene.2020.572707 PMID: 33510768
- Recchiuti A, Krishnamoorthy S, Fredman G, Chiang N, Serhan CN. MicroRNAs in resolution of acute inflammation: Identification of novel resolvin Dl‐miRNA circuits. FASEB J 2011; 25(2): 544-60. doi: 10.1096/fj.10-169599 PMID: 20956612
- Ochs MJ, Steinhilber D, Suess B. MicroRNA involved in inflammation: Control of eicosanoid pathway. Front Pharmacol 2011; 2: 39-9. doi: 10.3389/fphar.2011.00039 PMID: 21811464
- Fredman G, Li Y, Dalli J, Chiang N, Serhan CN. Self-limited versus delayed resolution of acute inflammation: Temporal regulation of pro-resolving mediators and microRNA. Sci Rep 2012; 2(1): 639-9. doi: 10.1038/srep00639 PMID: 22957142
- Ouimet M, Ediriweera HN, Gundra UM, et al. MicroRNA-33dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest 2015; 125(12): 4334-48. doi: 10.1172/JCI81676 PMID: 26517695
- Runtsch MC, Nelson MC, Lee SH, et al. Anti-inflammatory microRNA-146a protects mice from diet-induced metabolic disease. PLoS Genet 2019; 15(2): e1007970. doi: 10.1371/journal.pgen.1007970 PMID: 30768595
- Duroux-Richard I, Roubert C, Ammari M, et al. miR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics. Blood 2016; 128(26): 3125-36. doi: 10.1182/blood-2016-02-697003 PMID: 27702798
- Chaudhuri AA, So AYL, Sinha N, et al. MicroRNA-125b potentiates macrophage activation. J Immunol 2011; 187(10): 5062-8. doi: 10.4049/jimmunol.1102001 PMID: 22003200
- Chen X, Sun LG, Zhao Y. NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion. Brief Bioinform 2021; 22(1): 485-96. doi: 10.1093/bib/bbz159 PMID: 31927572
- Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: Taxonomy, trends and challenges of computational models. Brief Bioinform 2022; 23(5): bbac358. doi: 10.1093/bib/bbac358 PMID: 36056743
- Chen X, Xie D, Zhao Q, You ZH. MicroRNAs and complex diseases: From experimental results to computational models. Brief Bioinform 2019; 20(2): 515-39. doi: 10.1093/bib/bbx130 PMID: 29045685
- Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2019; 47(D1): D155-62. doi: 10.1093/nar/gky1141 PMID: 30423142
- Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J. miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res 2016; 44(W1): W135-41. doi: 10.1093/nar/gkw288 PMID: 27105848
- Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 2020; 48(D1): D127-31. doi: 10.1093/nar/gkz757 PMID: 31504780
- McGeary SE, Lin KS, Shi CY, et al. The biochemical basis of microRNA targeting efficacy. Science 2019; 366(6472): eaav1741. doi: 10.1126/science.aav1741 PMID: 31806698
- Huang HY, Lin YCD, Cui S, et al. miRTarBase update 2022: An informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 2022; 50(D1): D222-30. doi: 10.1093/nar/gkab1079 PMID: 34850920
- Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS. lncRNAdb: A reference database for long noncoding RNAs. Nucleic Acids Res 2011; 39(S1): D146-51. doi: 10.1093/nar/gkq1138 PMID: 21112873
- Zhao L, Wang J, Li Y, et al. NONCODEV6: An updated database dedicated to long non-coding RNA annotation in both animals and plants. Nucleic Acids Res 2021; 49(D1): D165-71. doi: 10.1093/nar/gkaa1046 PMID: 33196801
- Volders PJ, Anckaert J, Verheggen K, et al. LNCipedia 5: Towards a reference set of human long non-coding RNAs. Nucleic Acids Res 2019; 47(D1): D135-9. doi: 10.1093/nar/gky1031 PMID: 30371849
- Seifuddin F, Singh K, Suresh A, et al. lncRNAKB, a knowledgebase of tissue-specific functional annotation and trait association of long noncoding RNA. Sci Data 2020; 7(1): 326. doi: 10.1038/s41597-020-00659-z PMID: 33020484
- Li Z, Liu L, Jiang S, et al. LncExpDB: An expression database of human long non-coding RNAs. Nucleic Acids Res 2021; 49(D1): D962-8. doi: 10.1093/nar/gkaa850 PMID: 33045751
- Bao Z, Yang Z, Huang Z, Zhou Y, Cui Q, Dong D. LncRNADisease 2.0: An updated database of long non-coding RNA-associated diseases. Nucleic Acids Res 2019; 47(D1): D1034-7. doi: 10.1093/nar/gky905 PMID: 30285109
- Zhou B, Ji B, Liu K, et al. EVLncRNAs 2.0: An updated database of manually curated functional long non-coding RNAs validated by low-throughput experiments. Nucleic Acids Res 2021; 49(D1): D86-91. doi: 10.1093/nar/gkaa1076 PMID: 33221906
- Gao Y, Li X, Shang S, et al. LincSNP 3.0: An updated database for linking functional variants to human long non-coding RNAs, circular RNAs and their regulatory elements. Nucleic Acids Res 2021; 49(D1): D1244-50. doi: 10.1093/nar/gkaa1037 PMID: 33219661
- Wu W, Ji P, Zhao F. CircAtlas: An integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol 2020; 21(1): 101. doi: 10.1186/s13059-020-02018-y PMID: 32345360
- Liu M, Wang Q, Shen J, Yang BB, Ding X. Circbank: A comprehensive database for circRNA with standard nomenclature. RNA Biol 2019; 16(7): 899-905. doi: 10.1080/15476286.2019.1600395 PMID: 31023147
- Nunnally MH, Stull JT. Mammalian skeletal muscle myosin light chain kinases. A comparison by antiserum cross-reactivity. J Biol Chem 1984; 259(3): 1776-80. doi: 10.1016/S0021-9258(17)43475-2 PMID: 6546381
- Zhang W, Liu Y, Min Z, et al. circMine: A comprehensive database to integrate, analyze and visualize human diseaserelated circRNA transcriptome. Nucleic Acids Res 2022; 50(D1): D83-92. doi: 10.1093/nar/gkab809 PMID: 34530446
- Rophina M, Sharma D, Poojary M, Scaria V. Circad: A comprehensive manually curated resource of circular RNA associated with diseases. Database 2020; 2020: baaa019. doi: 10.1093/database/baaa019
- Dong R, Ma XK, Li GW, Yang L. CIRCpedia v2: An updated database for comprehensive circular RNA annotation and expression comparison. Genomics Proteomics Bioinformatics 2018; 16(4): 226-33. doi: 10.1016/j.gpb.2018.08.001 PMID: 30172046
Supplementary files
