Innovative Genoceuticals in Human Gene Therapy Solutions: Challenges and Safe Clinical Trials of Orphan Gene Therapy Products


Cite item

Full Text

Abstract

The success of gene therapy attempts is controversial and inconclusive. Currently, it is popular among the public, the scientific community, and manufacturers of Gene Therapy Medical Products. In the absence of any remedy or treatment options available for untreatable inborn metabolic orphan or genetic diseases, cancer, or brain diseases, gene therapy treatment by genoceuticals and T-cells for gene editing and recovery remains the preferred choice as the last hope. A new concept of "Genoceutical Gene Therapy" by using orphan ‘nucleic acid-based therapy’ aims to introduce scientific principles of treating acquired tissue damage and rare diseases. These Orphan Genoceuticals provide new scope for the ‘genodrug’ development and evaluation of genoceuticals and gene products for ideal ‘gene therapy’ use in humans with marketing authorization application (MAA). This perspective study focuses on the quality control, safety, and efficacy requirements of using ‘nucleic acid-based and human cell-based new gene therapy’ genoceutical products to set scientific advice on genoceutical-based ‘orphan genodrug’ design for clinical trials as per Western and European guidelines. The ethical Western FDA and European EMA guidelines suggest stringent legal and technical requirements on genoceutical medical products or orphan genodrug use for other countries to frame their own guidelines. The introduction section proposes less-- known ‘orphan drug-like’ properties of modified RNA/DNA, human cell origin gene therapy medical products, and their transgene products. The clinical trial section explores the genoceutical sources, FDA/EMA approvals for genoceutical efficacy criteria with challenges, and ethical guidelines relating to gene therapy of specific rare metabolic, cancer and neurological diseases. The safety evaluation of approved genoceuticals or orphan drugs is highlighted with basic principles and ‘genovigilance’ requirements (to observe any adverse effects, side effects, developed signs/symptoms) to establish their therapeutic use. Current European Union and Food and Drug Administration guidelines continuously administer fast-track regulatory legal framework from time to time, and they monitor the success of gene therapy medical product efficacy and safety. Moreover, new ethical guidelines on ‘orphan drug-like genoceuticals’ are updated for biodistribution of the vector, genokinetics studies of the transgene product, requirements for efficacy studies in industries for market authorization, and clinical safety endpoints with their specific concerns in clinical trials or public use.

About the authors

Rakesh Sharma

Surgery NMR Lab, Plastic Surgery Research, Massachusetts General Hospital

Author for correspondence.
Email: info@benthamscience.net

References

  1. Shim G, Kim D, Park GT, Jin H, Suh SK, Oh YK. Therapeutic gene editing: Delivery and regulatory perspectives. Acta Pharmacol Sin 2017; 38(6): 738-53. doi: 10.1038/aps.2017.2 PMID: 28392568
  2. Shahryari A, Jazi SM, Mohammadi S, et al. Development and Clinical translation of approved gene therapy products for genetic disorders. Front Genet 2019; 10: 868. doi: 10.3389/fgene.2019.00868 PMID: 31608113
  3. Sharma R, Moffatt R, Negi YS, Singh SP. Gene therapy for acquired tissue damage: Scope, Quality, Non-Clinical and Clinical Guidelines of gene therapy medical products. In: Gene Delivery Systems. Taylor and Francis: England, 2022. doi: 10.1201/9781003186069-14
  4. Khorkova O, Hsiao J, Wahlestedt C. Nucleic acid–based therapeutics in orphan neurological disorders: Recent developments. Front Mol Biosci 2021; 8: 1-24. www.frontiersin.org
  5. Existing gene therapy pipeline likely to yield dozens of approved products within five years 2017F211.v011. MIT NEWDIGS Research Brief 2018; F211: v011.
  6. Informing decisions about new health technologies: Gene Therapy: An overview of Approved and Pipeline technologies. Issues Emerg Health Technol 2018; 171: 1-23.
  7. Hirunagi T, Sahashi K, Meilleur KG, Katsuno M. Nucleic acid based therapeutic approach for spinal and bulbular muscular atrophy and related neurological disorders. Genes (Basel) 2022; 13(1): 109. doi: 10.3390/genes13010109 PMID: 35052449
  8. Rodrigues KF, Yong WTL, Bhuiyan MSA, Siddiquee S, Shah MD, Maran VBA. Current understanding on genetic basis of key metabolic disorders: A review. Biology (Basel) 2022; 11(9): 1308. doi: 10.3390/biology11091308 PMID: 36138787
  9. Shah P, Lalan M, Barve K. Intranasal delivery: An attractive route for the administration of nucleic acid based therapeutics for CNS disorders. Front Pharmacol 2022; 13: : 974666.. doi: 10.3389/fphar.2022.974666
  10. Vervaeke P, Borgos SE, Sanders NN, Combes F. Regulatory guidelines and preclinical tools to study the biodistribution of RNA therapeutics. Adv Drug Deliv Rev 2022; 184: 114236. doi: 10.1016/j.addr.2022.114236 PMID: 35351470
  11. Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis 2022; 13(7): 644. doi: 10.1038/s41419-022-05075-2 PMID: 35871216
  12. Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 2020; 19(10): 673-94. doi: 10.1038/s41573-020-0075-7 PMID: 32782413
  13. A first-in-class investigational drug with the potential to extend and enhance lives 2020. Available from: https://www.geron.com/r-d/imetelstat/
  14. Building an industry-leading genetic medicine pipeline 2020. Available from: https://www.sarepta.com/products-pipeline/ pipeline
  15. Chivukula S, Plitnik T, Tibbitts T, et al. Development of multivalent mRNA vaccine candidates for seasonal or pandemic influenza. NPJ Vaccines 2021; 6(1): 153. doi: 10.1038/s41541-021-00420-6 PMID: 34916519
  16. Kulkarni JA, Witzigmann D, Thomson SB, et al. The current landscape of nucleic acid therapeutics. Nat Nanotechnol 2021; 16(6): 630-43. doi: 10.1038/s41565-021-00898-0 PMID: 34059811
  17. Talap J, Zhao J, Shen M, et al. Recent advances in therapeutic nucleic acids and their analytical methods. J Pharm Biomed Anal 2021; 206(11): 114368. doi: 10.1016/j.jpba.2021.114368 PMID: 34571322
  18. Ionis' partner provides update on clinical studies evaluating tominersen (IONIS-HTT Rx) 2021. Available from: https://ir.ionispharma.com/news-releases/news-release-details/ionis-partner-provides-update-clinical-studies-evaluating
  19. FDA Approves Targeted Treatment for Rare Duchenne Muscular Dystrophy Mutation 2020. Available from:https://www.fda.gov/news-events/press-announcements/fda-approves-targeted-treatment-rare-duchenne-muscular-dystrophy-mutation
  20. Drug Approval Package 2020. Available from: http:// www.accessdata.fda.gov/drugsatfda_docs/nda/2004/21-756_Macugen.cfm
  21. Noxxon 2020. Available from: https://www.noxxon.com/
  22. Liu LS, Leung HM, Tam DY, Lo TW, Wong SW, Lo PK. α-l-Threose nucleic acids as biocompatible antisense oligonucleotides for suppressing gene expression in living cells. ACS Appl Mater Interfaces 2018; 10(11): 9736-43. doi: 10.1021/acsami.8b01180 PMID: 29473733
  23. Wang F, Liu LS, Lau CH, et al. Synthetic α-l-Threose nucleic acids targeting BcL-2 show gene silencing and in vivo antitumor activity for cancer therapy. ACS Appl Mater Interfaces 2019; 11(42): 38510-8. doi: 10.1021/acsami.9b14324 PMID: 31556592
  24. Kim Y, Jo M, Schmidt J, et al. Enhanced potency of GalNAc-conjugated antisense oligonucleotides in hepatocellular cancer models. Mol Ther 2019; 27(9): 1547-57. doi: 10.1016/j.ymthe.2019.06.009 PMID: 31303442
  25. Alnylam Pharmaceuticals Discontinues Revusiran Development 2020. Available from: http://www.alnylam.com/product-pipeline/ hereditary-attr-amyloidosis-with-polyneuropathy/
  26. Gaudet D, Karwatowska-Prokopczuk E, Baum SJ, et al. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia. Eur Heart J 2020; 41(40): 3936-45. doi: 10.1093/eurheartj/ehaa689 PMID: 32860031
  27. Alexander VJ, Xia S, Hurh E, et al. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels. Eur Heart J 2019; 40(33): 2785-96. doi: 10.1093/eurheartj/ehz209 PMID: 31329855
  28. Cohn DM, Viney NJ, Fijen LM, et al. Antisense inhibition of prekallikrein to control hereditary angioedema. N Engl J Med 2020; 383(13): 1242-7. doi: 10.1056/NEJMoa1915035 PMID: 32877578
  29. Alarcón-Arís D, Pavia-Collado R, Miquel-Rio L, et al. Anti-α-synuclein ASO delivered to monoamine neurons prevents α-synuclein accumulation in a Parkinson’s disease-like mouse model and in monkeys. EBioMedicine 2020; 59: : 102944.. doi: 10.1016/j.ebiom.2020.102944 PMID: 32810825
  30. Wang S, Allen N, Prakash TP, Liang X, Crooke ST. Lipid conjugates enhance endosomal release of antisense oligonucleotides into cells. Nucleic Acid Ther 2019; 29(5): 245-55. doi: 10.1089/nat.2019.0794 PMID: 31158063
  31. Cappella M, Ciotti C, Cohen-Tannoudji M, Biferi MG. Gene therapy for ALS-A perspective. Int J Mol Sci 2019; 20(18): 4388. doi: 10.3390/ijms20184388 PMID: 31500113
  32. Arora S, Layek B, Singh J. 2020; Design and validation of liposomal ApoE2 gene delivery system to evade blood-brain barrier for effective treatment of Alzheimer's Disease. Epub ahead of print. Mol Pharm 18(2): 714-25. doi: 10.1021/acs.molpharmaceut.0c00461
  33. Chen W, Hu Y, Ju D. Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm Sin B 2020; 10(8): 1347-59. doi: 10.1016/j.apsb.2020.01.015 PMID: 32963936
  34. Ma F, Yang L, Sun Z, et al. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Sci Adv 2020; 6(30): eabb4429. doi: 10.1126/sciadv.abb4429 PMID: 32832671
  35. Wave Life Sciences Reports Third Quarter 2020 Financial Results and Provides Business Update 2020. Available from: https://ir.wavelifesciences.com/news-releases/news-release-details/wave-life-sciences-announces-discontinuation-suvodirsen
  36. Wave life Sciences reports third quarter 2020 financial results 2020 Available from:https://ir.wavelifesciences.com/news-releases/news-release-details/wave-life-sciences-reports-third-quarter-2020-financial-results
  37. Hudry E, Vandenberghe LH. Therapeutic AAV gene transfer to the nervous system: A clinical reality. Neuron 2019; 101(5): 839-62. doi: 10.1016/j.neuron.2019.02.017 PMID: 30844402
  38. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 2019; 18(5): 358-78. doi: 10.1038/s41573-019-0012-9 PMID: 30710128
  39. Gaudet D, Stroes ES, Méthot J, et al. Long-term retrospective analysis of gene therapy with alipogene tiparvovec and its effect on lipoprotein lipase deficiency-induced pancreatitis. Hum Gene Ther 2016; 27(11): 916-25. doi: 10.1089/hum.2015.158 PMID: 27412455
  40. AT132: Audentes Press release Audenes therapeutics provides update on the aspire clinical trial evaluating at132 inpatients with x-linked myotubular myopathy 2020. Available from: https://www.audentestx.com/press_release/audentes-therapeutics-provides-update-on-the-aspiro-clinical-trial-evaluating-at132-in-patients-with-x-linked-myotubular-myopathy/
  41. Lysogene provides update on the AAVance Clinical Trial Evaluating LYS- SAF302 in Patients with MPS IIIA 2020. Available from: https://www.lysogene.com/lysogene-provides-update-on- the-aavance-clinical-trial-evaluating-lys-saf302-in-patients-with-mps-iiia/
  42. Ernst MPT, Broeders M, Herrero-Hernandez P, Oussoren E, van der Ploeg AT, Pijnappel WWMP. Ready for repair? Gene editing enters the clinic for the treatment of human disease. Mol Ther Methods Clin Dev 2020; 18: 532-57. doi: 10.1016/j.omtm.2020.06.022 PMID: 32775490
  43. Sangamo Therapeutics Reports Business Highlights and Third Quarter 2020 Financial Results 2020. Available from: https://investor.sangamo.com/news-releases/news-release-details/sangamo-therapeutics-reports-business-highlights-and-third
  44. Qu L, Yi Z, Zhu S, et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat Biotechnol 2019; 37(9): 1059-69. doi: 10.1038/s41587-019-0178-z PMID: 31308540
  45. Pro QR. Axiomer technology - RNA base editing 2020. Available from: https://www.proqr.com/axiomer-technology
  46. Merkle T, Merz S, Reautschnig P, et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat Biotechnol 2019; 37(2): 133-8. doi: 10.1038/s41587-019-0013-6 PMID: 30692694
  47. Padmakumar S, Jones G, Pawar G, et al. Minimally Invasive Nasal Depot (MIND) technique for direct BDNF AntagoNAT delivery to the brain. J Control Release 2021; 331: 176-86. doi: 10.1016/j.jconrel.2021.01.027 PMID: 33484777
  48. Han Z, Chen C, Christiansen A, et al. Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome. Sci Transl Med 2020; 12(558): eaaz6100. doi: 10.1126/scitranslmed.aaz6100 PMID: 32848094
  49. Boldly Restoring Genetic Health 2020. Available from: https://www.stoketherapeutics.com/
  50. Reza-Zaldivar EE, Hernández-Sápiens MA, Minjarez B, et al. In Alzheimer's disease: A focus on MicroRNA. Front Cel Dev Biol 2020; 8: 255. doi: 10.3389/fcell.2020.00255
  51. Innao V, Allegra A, Pulvirenti N, Allegra AG, Musolino C. Therapeutic potential of antagomiRs in haematological and oncological neoplasms. Eur J Cancer Care (Engl) 2020; 29(2): e13208. doi: 10.1111/ecc.13208 PMID: 31899849
  52. Delivering life-changing therapeutics to patients with orphan kidney diseases 2020. Available from: http://regulusrx.com/
  53. Brites D. Regulatory function of MICRORNAS in microglia. Glia 2020; 68(8): 1631-42. doi: 10.1002/glia.23846 PMID: 32463968
  54. Zhang H, Bussmann J, Huhnke FH, et al. Together is better: mRNA Co-encapsulation in lipoplexes is required to obtain ratiometric co-delivery and protein expression on the single cell level. Adv Sci (Weinh) 2022; 9(4): 2102072. doi: 10.1002/advs.202102072 PMID: 34913603
  55. Wang XY, Yuan L, Li YL, et al. RNA activation technique and its applications in cancer research. Am J Cancer Res 2018; 8(4): 584-93. PMID: 29736305
  56. Sarker D, Plummer R, Meyer T, et al. A small activating RNA therapeutic upregulating C/EBP-α, in patients with advanced liver cancer: a first-in-human, multicenter, open-label, phase I trial. Clin Cancer Res 2020; 26(15): 3936-46. doi: 10.1158/1078-0432.CCR-20-0414 PMID: 32357963
  57. CuRNA/OPKO 2020 Available at: http://www.opko.com/ therapeutics/opko-curna/
  58. Poplawski SG, Garbett KA, McMahan RL, et al. An antisense oligonucleotide leads to suppressed transcription of Hdac2 and long-term memory enhancement. Mol Ther Nucleic Acids 2020; 19: 1399-412. doi: 10.1016/j.omtn.2020.01.027 PMID: 32160709
  59. Sartorelli V, Lauberth SM. Enhancer RNAs are an important regulatory layer of the epigenome. Nat Struct Mol Biol 2020; 27(6): 521-8. doi: 10.1038/s41594-020-0446-0 PMID: 32514177
  60. Available from: https://ir.ionispharma.com/news-releases/news-release-details/ionis-treatment-alexander-disease-granted-orphan-drug-status-ema
  61. Kumar A, Sidhu J, Goyal A, Tsao JW. Alzheimer disease. StatPearls. Treasure Island, FL: StatPearls Publishing 2020
  62. Ionis licenses investigational Alzheimer's therapy 2020. Available from: https://ir.ionispharma.com/news-releases/news-release-details/ionis-licenses-investigational-alzheimers-therapy
  63. Martinez-Losa M, Tracy TE, Ma K, et al. Nav1.1-Overexpressing interneuron transplants restore brain rhythms and cognition in a mouse model of Alzheimer’s disease. Neuron 2018; 98(1): 75-89.e5. doi: 10.1016/j.neuron.2018.02.029 PMID: 29551491
  64. Hsiao J, Yuan TY, Tsai MS, et al. Upregulation of haploinsufficient gene expression in the brain by targeting a long non-coding RNA improves seizure phenotype in a model of Dravet syndrome. EBioMedicine 2016; 9: 257-77. doi: 10.1016/j.ebiom.2016.05.011 PMID: 27333023
  65. Gao J, Littman R, Diamante G, et al. Function in APP/PS1 mice. Mol Cell Biol 2020; 40(8): e00518-19. doi: 10.1128/MCB.00518-19 PMID: 31964754
  66. Walgrave H, Zhou L, De Strooper B, Salta E. The promise of microRNA-based therapies in Alzheimer’s disease: Challenges and perspectives. Mol Neurodegener 2021; 16(1): 76. doi: 10.1186/s13024-021-00496-7 PMID: 34742333
  67. Griciuc A, Federico AN, Natasan J, et al. Gene therapy for Alzheimer’s disease targeting CD33 reduces amyloid beta accumulation and neuroinflammation. Hum Mol Genet 2020; 29(17): 2920-35. doi: 10.1093/hmg/ddaa179 PMID: 32803224
  68. Hampel H, Caraci F, Cuello AC, et al. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front Immunol 2020; 11: 456. doi: 10.3389/fimmu.2020.00456 PMID: 32296418
  69. Guarnieri G, Sarchielli E, Comeglio P, et al. Changes in human basal forebrain cholinergic neuroblasts. Int J Mol Sci 2020; 21(17): 6128. doi: 10.3390/ijms21176128 PMID: 32854421
  70. Li D, Aung-Htut MT, Ham KA, Fletcher S, Wilton SD. A splice intervention therapy for autosomal recessive juvenile Parkinson’s disease arising from parkin mutations. Int J Mol Sci 2020; 21(19): 7282. doi: 10.3390/ijms21197282 PMID: 33019779
  71. Jiang S, Zhao G, Lu J, et al. Silencing of circular RNA ANRIL attenuates oxygen–glucose deprivation and reoxygenation-induced injury in human brain microvascular endothelial cells by sponging miR-622. Biol Res 2020; 53(1): 27. doi: 10.1186/s40659-020-00295-2 PMID: 32616043
  72. Zhang Z, Sun X, Zhao G, Ma Y, Zeng G. LncRNA embryonic stem cells expressed 1 (Lncenc1) is identified as a novel regulator in neuropathic pain by interacting with EZH2 and downregulating the expression of Bai1 in mouse microglia. Exp Cell Res 2021; 399(1): 112435. doi: 10.1016/j.yexcr.2020.112435 PMID: 33340495
  73. Mejzini R, Flynn LL, Pitout IL, et al. Are we now? Front Neurosci 2019; 13: 1310. doi: 10.3389/fnins.2019.01310 PMID: 31866818
  74. Pansarasa O, Bordoni M, Diamanti L, Sproviero D, Gagliardi S, Cereda C. SOD1 in amyotrophic lateral sclerosis: "ambivalent" behavior connected to the disease. Int J Mol Sci 2018; 19(5): 1345. doi: 10.3390/ijms19051345 PMID: 29751510
  75. Miller T, Cudkowicz M, Shaw PJ, et al. Phase 1-2 trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med 2020; 383(2): 109-19. doi: 10.1056/NEJMoa2003715 PMID: 32640130
  76. Voyager Therapeutics Prioritizes Pipeline and Reports Second Quarter 2022 Financial and Operating Results 2020. Available from: https://www.voyagertherapeutics.com/our-approach-programs/clinical-trials/
  77. Novartis United States 2020. Available from: https://www.avexis.com/us/index.html
  78. Gene therapy,Apic Bio 2020. Available from: https://apic-bio.com/tag/gene-therapy/
  79. The Ionis antisense pipeline 2020. Available from: https://www.ionispharma.com/ionis-innovation/pipeline/
  80. Our pipeline: multiple modalities and novel targets 2020. Available from: https://wavelifesciences.com/pipeline/
  81. Bampton A, Gittings LM, Fratta P, Lashley T, Gatt A. The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathol 2020; 140(5): 599-623. doi: 10.1007/s00401-020-02203-0 PMID: 32748079
  82. Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA 2015 . Available from:https://angelmansyndromenews.com/news-posts/2020/07/28/ovid-uconn-collaborating-to-develop-shrna-gene-therapy-for-angelman/ doi: 10.1038/nature13975
  83. Angelman Syndrome. Ovid, UConn Collaborating to Develop shRNA Gene Therapy for Angelman 2020. Available from: https://angelmansyndromenews.com/news/ovid-uconn-collaborating-to-develop-shrna-gene-therapy-for-angelman/
  84. Sarepta AS. Sarepta Company News Angelman syndrome stridebio 2020. Sarepta Company News Available from: https:// www.sarepta.com/angelman-syndrome-stridebio
  85. A pipeline of innovation and hope 2020. Available from: https://www.ptcbio.com/our-pipeline/portfolio-pipeline/
  86. PTC Therapeutics, Inc is committed to serving the interests of all our stakeholders 2020. Available from: https://ir.ptcbio.com/news-releases/news-release-details/ptc-therapeutics-announces-results-long-term-aadc-deficiency
  87. Kojima K, Nakajima T, Taga N, et al. Gene therapy improves motor and mental function of aromatic l-amino acid decarboxylase deficiency. Brain 2019; 142(2): 322-33. doi: 10.1093/brain/awy331 PMID: 30689738
  88. First-in-human gene therapy study for Canavan disease treatment 2020. Available from: https://www.the-scientist.com/features/slow-march-toward-a-canavan-cure-64282
  89. Bridgebio pharma to present updated data from its bbp-812 canavan disease gene therapy program at the 2023 american society of gene and cell therapy (asgct) annual meeting 2020. Available from:https://bridgebio.com/pipeline
  90. Du X, Xie X, Liu R. The role of α-synuclein oligomers in Parkinson’s disease. Int J Mol Sci 2020; 21(22): 8645. doi: 10.3390/ijms21228645 PMID: 33212758
  91. Scheffer IE, Nabbout R. SCN1A-related phenotypes: Epilepsy and beyond. Epilepsia 2019; 60(S3) (Suppl. 3): S17-24. doi: 10.1111/epi.16386 PMID: 31904117
  92. Samanta D. Changing landscape of Dravet syndrome management: an overview. Neuropediatrics 2020; 51(2): 135-45. doi: 10.1055/s-0040-1701694 PMID: 32079034
  93. Lim KH, Han Z, Jeon HY, et al. Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression. Nat Commun 2020; 11(1): 3501. doi: 10.1038/s41467-020-17093-9 PMID: 32647108
  94. Niibori Y, Lee SJ, Minassian BA, Hampson DR. Rescue after gene therapy in a mouse model of Dravet syndrome. Hum Gene Ther 2020; 31(5-6): 339-51. doi: 10.1089/hum.2019.225 PMID: 31830809
  95. Lenk GM, Jafar-Nejad P, Hill SF, et al. Scn8a antisense oligonucleotide is protective in mouse models of SCN8A encephalopathy and Dravet syndrome. Ann Neurol 2020; 87(3): 339-46. doi: 10.1002/ana.25676 PMID: 31943325
  96. Bryson A, Petrou S. SCN1A channelopathies: Navigating from genotype to neural circuit dysfunction. Front Neurol 2023; 14. https://doi.org/10.3389/fneur.2023.1173460
  97. Zhao H, He L, Li S, et al. Generation of corrected-hiPSC (USTCi001-A-1) from epilepsy patient iPSCs using TALEN-mediated editing of the SCN1A gene. Stem Cell Res (Amst) 2020; 46: 101864. doi: 10.1016/j.scr.2020.101864 PMID: 32544858
  98. Zhou H, Meng J, Malerba A, et al. Myostatin inhibition in combination with antisense oligonucleotide therapy improves outcomes in spinal muscular atrophy. J Cachexia Sarcopenia Muscle 2020; 11(3): 768-82. doi: 10.1002/jcsm.12542 PMID: 32031328
  99. Xie Y, Ng NN, Safrina OS, et al. Comparisons of dual isogenic human iPSC pairs identify functional alterations directly caused by an epilepsy associated SCN1A mutation. Neurobiol Dis 2020; 134: 104627. doi: 10.1016/j.nbd.2019.104627 PMID: 31786370
  100. Yamagata T, Raveau M, Kobayasi K, et al. CRISPR/dCas9 based Scn1a gene activation in inhibitory neurons ameliorates epileptic and behavioral phenotypes of Dravet syndrome model mice. Neurobiol Dis 2023; 141: 104954.
  101. Judge DP, Kristen AV, Grogan M, et al. Phase 3 multicenter study of revusiran in patients with hereditary transthyretin-mediated (hATTR) amyloidosis with cardiomyopathy (ENDEAVOUR). Cardiovasc Drugs Ther 2020; 34(3): 357-70. doi: 10.1007/s10557-019-06919-4 PMID: 32062791
  102. Shen X, Wong J, Prakash TP, et al. Progress towards drug discovery for Friedreich’s Ataxia: Identifying synthetic oligonucleotides that more potently activate expression of human frataxin protein. Bioorg Med Chem 2020; 28(11): 115472. doi: 10.1016/j.bmc.2020.115472 PMID: 32279920
  103. Marxreiter F, Stemick J, Kohl Z. Huntingtin lowering strategies. Int J Mol Sci 2020; 21(6): 2146. doi: 10.3390/ijms21062146 PMID: 32245050
  104. Voyager Therapeutics Provides Regulatory Update on VY-HTT01 Program 2020. Available from:https://ir.voyagertherapeutics.com/news-releases/news-release-details/voyager-therapeutics-provides-regulatory-update-vy-htt01-program
  105. Thank You for Making the 19th Annual Scientific Meeting a Success 2020. Available from: https://tools.eurolandir.com/tools/Pressreleases/GetPressRelease/? ID=3828535&lang=en-GB&companycode=nl-qure&v=
  106. Zeitler B, Froelich S, Marlen K. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat Med 2020; 25(7): 1131-42. doi: 10.3390/ijms21062146 PMID: 32245050
  107. QRX-704, a novel antisense oligonucleotide therapy designed to prevent HD pathology while maintaining HTT function 2020. Available from: https://www.proqr.com/files/2020-08/ProQR_ QRX-704_EHDN-2018_a-novel-antisense-oligonucleotide-therapy.pdf
  108. Francelle L, Lotz C, Outeiro T, Brouillet E, Merienne K. Contribution of neuroepigenetics to huntington’s disease. Front Hum Neurosci 2017; 11: 17. doi: 10.3389/fnhum.2017.00017 PMID: 28194101
  109. REGENXBIO Provides Update on Progress of Clinical Programs for Rare Genetic Neurodegenerative Diseases 2020. Available from:http://ir.regenxbio.com/news-releases/news-release-details/regenxbio-provides-update-progress-clinical-programs-rare
  110. REGENXBIO Announces Continued Progress and Expansion of Clinical Development Program for RGX-121 for the Treatment of Mucopolysaccharidosis Type II (MPS II) 2020. Available from:https://www.prnewswire.com/news-releases/regenxbio-announces-continued-progress-and-expansion-of-clinical-development-program-for-rgx-121-for-the-treatment-of-mucopolysaccharidosis-type-ii-mps-ii-301141550.html
  111. AVROBIO Reports Third Quarter 2020 Financial Results and Provides Business Update 2020. Available from:https://investors.avrobio.com/news-releases/news-release-details/avrobio-reports-third-quarter-2020-financial-results-and
  112. Abeona Therapeutics Announces Positive Interim Data from MPS III Gene Therapy Programs Presented at WORLDSymposium 2020. Available from: https://www.globenewswire.com/news-release/2020/02/12/1984075/0/en/Abeona-Therapeutics-Announces-Positive-Interim-Data-from-MPS-III-Gene-Therapy-Programs-Presented-at-WORLDSymposium.html
  113. Abeona Therapeutics and Taysha Gene Therapies Enter into Licensing and Inventory Purchase Agreements for ABO-202, a Clinical Stage, Novel, One-time Gene Therapy for CLN1 Disease 2020. Available from: https://www.globenewswire.com/news-release/2020/08/17/2079104/0/en/Abeona-Therapeutics-and-Taysha-Gene-Therapies-Enter-into-Licensing-and-Inventory-Purchase-Agreements-for-ABO-202-a-Clinical-Stage-Novel-One-time-Gene-Therapy-for-CLN1-Disease.html
  114. Tardieu M, Zérah M, Gougeon ML, et al. Intracerebral gene therapy in children with mucopolysaccharidosis type IIIB syndrome: an uncontrolled phase 1/2 clinical trial. Lancet Neurol 2017; 16(9): 712-20. doi: 10.1016/S1474-4422(17)30169-2 PMID: 28713035
  115. Johnson TB, Cain JT, White KA, Ramirez-Montealegre D, Pearce DA, Weimer JM. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat Rev Neurol 2019; 15(3): 161-78. doi: 10.1038/s41582-019-0138-8 PMID: 30783219
  116. Johnson T B, White K A, Brudvig J J, et al. AAV9 gene therapy increases lifespan and treats pathological and behavioral abnormalities -5 in a mouse model of CLN8-batten Disease. Mol Ther 2020; 29(1): 162-75. doi: 10.1016/j.ymthe.2020.09.033
  117. RGX-181 is our product candidate for the treatment of late-infantile neuronal ceroid lipofuscinosis Type 2 (CLN2 disease), a form of Batten disease 2020. Available from: https://www.regenxbio.com/rgx-181/
  118. Programs and Pipeline 2020. Available from: https://www.amicusrx.com/programs-pipeline/
  119. EB-101 for Recessive Dystrophic Epidermolysis Bullosa (RDEB) 2020. Available from: https://www.abeonatherapeutics.com/science#pipeline
  120. Centa JL, Jodelka FM, Hinrich AJ, et al. Therapeutic efficacy of antisense oligonucleotides in mouse models of CLN3 Batten disease. Nat Med 2020; 26(9): 1444-51. doi: 10.1038/s41591-020-0986-1 PMID: 32719489
  121. Bajaj L, Sharma J, di Ronza A, et al. A CLN6-CLN8 complex recruits lysosomal enzymes at the ER for Golgi transfer. J Clin Invest 2020; 130(8): 10.1172/JCI130955. doi: 10.1172/JCI130955 PMID: 32597833
  122. Kim J, Hu C, Moufawad El Achkar C, et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N Engl J Med 2019; 381(17): 1644-52. doi: 10.1056/NEJMoa1813279 PMID: 31597037
  123. Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers 2017; 3(1): 17013. doi: 10.1038/nrdp.2017.13 PMID: 28332488
  124. Nakamori M, Junn E, Mochizuki H, Mouradian MM. Nucleic acid-based therapeutics for Parkinson’s disease. Neurotherapeutics 2019; 16(2): 287-98. doi: 10.1007/s13311-019-00714-7 PMID: 30756362
  125. Du J, Simmons S, Brunklaus A, et al. Differential excitatory vs inhibitory SCN expression at single cell level regulates brain sodium channel function in neurodevelopmental disorders. Eur J Paediatr Neurol 2020; 24: 129-33. doi: 10.1016/j.ejpn.2019.12.019 PMID: 31928904
  126. Sangamo showcases progress in our pre-clinical programs at ASGCT 2020. Available from: https://www.sangamo.com/pipeline
  127. Kania E, Long JS, McEwan DG et al. LRRK2 phosphorylation status and kinase activity regulate (macro)autophagy in a Rab8a/ Rab10-dependent manner. Cell Death Dis 2023; 14, 436. https://doi.org/10.1038/s41419-023-05964-0.
  128. Jeong GR, Lee BD. Pathological functions of LRRK2 in Parkinson’s disease. Cells 2020; 9(12): 2565. doi: 10.3390/cells9122565 PMID: 33266247
  129. Li L, Xu Y, Zhao M, Gao Z. Neuro-protective roles of long non-coding RNA MALAT1 in Alzheimer’s disease with the involvement of the microRNA-30b/CNR1 network and the following PI3K/AKT activation. Exp Mol Pathol 2020; 117: 104545. doi: 10.1016/j.yexmp.2020.104545 PMID: 32976819
  130. Iris voyager therapeutics company news-release : Neurocrine biosciences and voyager herapeutics present new long 2020. Available from: https://ir.voyagertherapeutics.com/news-releases/news-release-details/neurocrine-biosciences-and-voyager-therapeutics-present-new-long
  131. Breaking the Boundaries of Gene Therapy 2020. Available from: https://www.axovant.com
  132. Brain Neurotherapy Bio, Inc Announces Treatment of First Patient in New GDNF Gene Therapy Trial for Parkinson’s Disease 2020. Available from: https://e674c233- 41f6-46e5-a454-6ee455f25619.usrfiles.com/ugd/e674c2_4ee7cd0693a9413cbb10b0a666f48fe4.pdf
  133. Chu Y, Bartus RT, Manfredsson FP, Olanow CW, Kordower JH. Long-term post-mortem studies following neurturin gene therapy in patients with advanced Parkinson’s disease. Brain 2020; 143(3): 960-75. doi: 10.1093/brain/awaa020 PMID: 32203581
  134. Messina S, Sframeli M. New treatments in spinal muscular atrophy: positive results and new challenges. J Clin Med 2020; 9(7): 2222. doi: 10.3390/jcm9072222 PMID: 32668756
  135. Lee CS, Bishop ES, Zhang R, et al. Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis 2017; 4(2): 43-63. doi: 10.1016/j.gendis.2017.04.001 PMID: 28944281
  136. Bondar O, Shevchenko V, Martynova A, et al. Intracellular delivery of VEGF165 encoding gene therapeutic using trifunctional copolymers of ethylene oxide and propylene oxide. Eur Polym J 2015; 68: 680-6. doi: 10.1016/j.eurpolymj.2015.03.042
  137. Mäkinen K, Manninen H, Hedman M, et al. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: A randomized, placebo-controlled, double-blinded phase II study. Mol Ther 2002; 6(1): 127-33. doi: 10.1006/mthe.2002.0638 PMID: 12095313
  138. Ricotta DN, Frishman W. Mipomersen. Cardiol Rev 2012; 20(2): 90-5. doi: 10.1097/CRD.0b013e31823424be PMID: 22293857
  139. Crooke ST, Geary RS. Clinical pharmacological properties of mipomersen (Kynamro), a second generation antisense inhibitor of apolipoprotein B. Br J Clin Pharmacol 2013; 76(2): 269-76. doi: 10.1111/j.1365-2125.2012.04469.x PMID: 23013161
  140. Kohlhapp FJ, Kaufman HL. Molecular pathways: Mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res 2016; 22(5): 1048-54. doi: 10.1158/1078-0432.CCR-15-2667 PMID: 26719429
  141. Bommareddy PK, Patel A, Hossain S, Kaufman HL. Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am J Clin Dermatol 2017; 18(1): 1-15. doi: 10.1007/s40257-016-0238-9 PMID: 27988837
  142. Stein CA. Eteplirsen approved for Duchenne muscular dystrophy: the FDA faces a difficult choice. Mol Ther 2016; 24(11): 1884-5. doi: 10.1038/mt.2016.188 PMID: 27916994
  143. Moulton J. Guide for morpholino users: toward therapeutics. J Drug Discov Dev Deliv 2016; 3: 1023.
  144. d’Ydewalle C, Sumner CJ. Spinal muscular atrophy therapeutics: where do we stand? Neurotherapeutics 2015; 12(2): 303-16. doi: 10.1007/s13311-015-0337-y PMID: 25631888
  145. Zanetta C, Nizzardo M, Simone C, et al. Molecular therapeutic strategies for spinal muscular atrophies: current and future clinical trials. Clin Ther 2014; 36(1): 128-40. doi: 10.1016/j.clinthera.2013.11.006 PMID: 24360800
  146. Chung DC, Bertelsen M, Lorenz B, et al. The natural history of inherited retinal dystrophy due to biallelic mutations in the RPE65 Gene. Am J Ophthalmol 2019; 199: 58-70. doi: 10.1016/j.ajo.2018.09.024 PMID: 30268864
  147. Miraldi Utz V, Coussa RG, Antaki F, Traboulsi EI. Gene therapy for RPE65 -related retinal disease. Ophthalmic Genet 2018; 39(6): 671-7. doi: 10.1080/13816810.2018.1533027 PMID: 30335549
  148. Russell S, Bennett J, Maguire AM, High KA. Voretigene neparvovec-rzyl for the treatment of biallelic RPE65 mutation–associated retinal dystrophy. Expert Opin Orphan Drugs 2018; 6(8): 457-64. doi: 10.1080/21678707.2018.1508340
  149. Patel UMB, De Léséleuc L, Visintini S. Voretigene neparvovec: An emerging gene therapy for the treatment of inherited blindness. CADTH issues in emerging health technologies. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health. 2018.
  150. Butler JS, Chan A, Costelha S, et al. Preclinical evaluation of RNAi as a treatment for transthyretin-mediated amyloidosis. Amyloid 2016; 23(2): 109-18. doi: 10.3109/13506129.2016.1160882 PMID: 27033334
  151. Kerschen P, Planté-Bordeneuve V. Current and future treatment approaches in transthyretin familial amyloid polyneuropathy. Curr Treat Options Neurol 2016; 18(12): 53. doi: 10.1007/s11940-016-0436-z PMID: 27873215
  152. Plante-Bordeneuve V. Transthyretin familial amyloid polyneuropathy: an update. J Neurol 2018; 265(4): 976-83. doi: 10.1007/s00415-017-8708-4 PMID: 29249054
  153. Rao VK, Kapp D, Schroth M. Gene therapy for spinal muscular atrophy: an emerging treatment option for a devastating disease. J Manag Care Spec Pharm 2018; 12: S3-S16.
  154. Waldrop MA, Kolb SJ. Current treatment options in neurology—SMA therapeutics. Curr Treat Options Neurol 2019; 21(6): 25. doi: 10.1007/s11940-019-0568-z PMID: 31037425
  155. Malone DC, Dean R, Arjunji R, et al. Cost-effectiveness analysis of using onasemnogene abeparvocec (AVXS-101) in spinal muscular atrophy type 1 patients. J Mark Access Health Policy 2019; 7(1): 1601484. doi: 10.1080/20016689.2019.1601484 PMID: 31105909
  156. Mendell JR, Al-Zaidy S, Shell R, et al. AVXS-101 Phase 1 gene therapy clinical trial in SMA Type 1: Event free survival and achievement of developmental milestones. Eur J Paediatr Neurol 2017; 21: e13-4. doi: 10.1016/j.ejpn.2017.04.1216
  157. Ferrua F, Aiuti A. Twenty-five years of gene therapy for ADA-SCID: from bubble babies to an approved drug. Hum Gene Ther 2017; 28(11): 972-81. doi: 10.1089/hum.2017.175 PMID: 28847159
  158. Whitmore KV, Gaspar HB. Adenosine deaminase deficiency – More than just an immunodeficiency. Front Immunol 2016; 7: 314. doi: 10.3389/fimmu.2016.00314 PMID: 27579027
  159. Lorentino F, Labopin M, Fleischhauer K, et al. The impact of HLA matching on outcomes of unmanipulated haploidentical HSCT is modulated by GVHD prophylaxis. Blood Adv 2017; 1(11): 669-80. doi: 10.1182/bloodadvances.2017006429 PMID: 29296709
  160. Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J 2017; 7(6): e577. doi: 10.1038/bcj.2017.53 PMID: 28665419
  161. Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther 2015; 15(8): 1145-54. doi: 10.1517/14712598.2015.1046430 PMID: 25985798
  162. Hartmann J, Schüßler-Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 2017; 9(9): 1183-97. doi: 10.15252/emmm.201607485 PMID: 28765140
  163. Rodriguez A, Brown C, Badie B. Chimeric antigen receptor T-cell therapy for glioblastoma. Transl Res 2017; 187: 93-102. doi: 10.1016/j.trsl.2017.07.003 PMID: 28755873
  164. Kell J. Considerations and challenges for patients with refractory and relapsed acute myeloid leukaemia. Leuk Res 2016; 47: 149-60. doi: 10.1016/j.leukres.2016.05.025 PMID: 27371910
  165. Roberts ZJ, Better M, Bot A, Roberts MR, Ribas A. Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL. Leuk Lymphoma 2018; 59(8): 1785-96. doi: 10.1080/10428194.2017.1387905 PMID: 29058502
  166. Razavi NH, Ardebili A, Ravanshad M, et al. E6 specific detection and typing of human Papillomavirusa in oral cavity specimens from Iranian patients. Iran Biomed J 2017; 21(6): 411-6. PMID: 28460428
  167. Zhang WW, Li L, Li D, et al. The first approved gene therapy procuct for cancer ad-p53 (gendicine): 12 years in the clinic. Hum Gene Ther 2018; 29(2): 160-79. doi: 10.1089/hum.2017.218 PMID: 29338444
  168. Solomon SD, Lindsley K, Vedula SS, Krzystolik MG, Hawkin BS. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev 2014; 8(8): CD005139.
  169. Battaglia PM, Di Bartolo E, Brue C, et al. Pegaptanib: choroidal neovascularization in patients with age-related macular degeneration and previous arterial thromboembolic events. Eur J Ophthalmol 2018; 28(1): 58-62. doi: 10.5301/ejo.5001060 PMID: 29077191
  170. Liang M. Oncorine, the world first oncolytic virus medicine and its update in China. Curr Cancer Drug Targets 2018; 18(2): 171-6. doi: 10.2174/1568009618666171129221503 PMID: 29189159
  171. Garber K. Big win possible for Ionis/Biogen antisense drug in muscular atrophy. Nat Biotechnol 2016; 34(10): 1002-3. doi: 10.1038/nbt1016-1002 PMID: 27727217
  172. Chawla SP, Chua VS, Fernandez L, et al. Advanced phase I/II studies of targeted gene delivery in vivo: intravenous Rexin-G for gemcitabine-resistant metastatic pancreatic cancer. Mol Ther 2010; 18(2): 435-41. doi: 10.1038/mt.2009.228 PMID: 19826403
  173. Deev R, Plaksa I, Bozo I, Isaev A. Results of an international postmarketing surveillance study of pl-VEGF165 safety and efficacy in 210 patients with peripheral arterial disease. Am J Cardiovasc Drugs 2017; 17(3): 235-42. doi: 10.1007/s40256-016-0210-3 PMID: 28050885
  174. Deev RV, Bozo IY, Mzhavanadze ND, et al. pCMV-vegf165 intramuscular gene transfer is an effective method of treatment for patients with chronic lower limb ischemia. J Cardiovasc Pharmacol Ther 2015; 20(5): 473-82. doi: 10.1177/1074248415574336 PMID: 25770117
  175. Bryant LM, Christopher DM, Giles AR, et al. Lessons learned from the clinical development and market authorization of Glybera. Hum Gene Ther Clin Dev 2013; 24(2): 55-64. doi: 10.1089/humc.2013.087 PMID: 23808604
  176. Ferreira V, Petry H, Salmon F. Immune responses to AAV-vectors, the glybera example from bench to bedside. Front Immunol 2014; 5: 82-2. doi: 10.3389/fimmu.2014.00082 PMID: 24624131
  177. Bryant LM, Christopher DM, Giles AR, et al. Lessons learned from the clinical development and market authorization of Glybera. Hum Gene Ther Clin Dev 2013; 24(2): 55-64. doi: 10.1089/humc.2013.087 PMID: 23808604
  178. Gaudet D, Stroes ES, Méthot J, et al. Long-term retrospective analysis of gene therapy with alipogene tiparvovec and its effect on lipoprotein lipase deficiency-induced pancreatitis. Hum Gene Ther 2016; 27(11): 916-25. doi: 10.1089/hum.2015.158 PMID: 27412455
  179. Geary RS, Norris D, Yu R, Bennett CF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 2015; 87: 46-51. doi: 10.1016/j.addr.2015.01.008 PMID: 25666165
  180. Santos RD, Raal FJ, Catapano AL, Witztum JL, Steinhagen-Thiessen E, Tsimikas S. Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein (a) in various populations with hypercholesterolemia: results of 4 phase III trials. Arteriosclerosis, thrombosis, and vascular biology. ATVBAHA 2015; 35(3): 689-99.
  181. Stein EA, Dufour R, Gagne C, et al. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation 2012; 126(19): 2283-92. doi: 10.1161/CIRCULATIONAHA.112.104125 PMID: 23060426
  182. McGowan MP, Tardif JC, Ceska R, et al. Randomized, placebo- controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS One 2012; 7(11): e49006. doi: 10.1371/journal.pone.0049006 PMID: 23152839
  183. Printz C. FDA approves new treatment of metastatic melanoma. Cancer 2016; 122(8): 1149-9. doi: 10.1002/cncr.29998 PMID: 27061518
  184. Chakradhar S. Viral vanguard: Designing cancer-killing viruses to chase metastatic tumors. Nat Med 2017; 23(6): 652-5. doi: 10.1038/nm0617-652 PMID: 28586331
  185. Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci 2016; 107(10): 1373-9. doi: 10.1111/cas.13027 PMID: 27486853
  186. Hu JCC, Coffin RS, Davis CJ, et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 2006; 12(22): 6737-47. doi: 10.1158/1078-0432.CCR-06-0759 PMID: 17121894
  187. Andtbacka RHI, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 2015; 33(25): 2780-8. doi: 10.1200/JCO.2014.58.3377 PMID: 26014293
  188. Kole R, Krieg AM. Exon skipping therapy for Duchenne muscular dystrophy. Adv Drug Deliv Rev 2015; 87: 104-7. doi: 10.1016/j.addr.2015.05.008 PMID: 25980936
  189. FDA grants accelerated approval to first drug for Duchenne muscular dystrophy 2016. Available from: https://www.fda.gov/news-events/press-announcements/fda-grants-accelerat
  190. St Andre M, Johnson M, Bansal PN, et al. A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys. Skelet Muscle 2017; 7(1): 25. doi: 10.1186/s13395-017-0141-y PMID: 29121992
  191. Lim KR, Maruyama R, Yokota T. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther 2017; 11: 533-45. doi: 10.2147/DDDT.S97635 PMID: 28280301
  192. Burki U, Keane J, Blain A, et al. Development and application of an ultrasensitive hybridization-based ELISA method for the determination of peptide-conjugated phosphorodiamidate morpholino oligonucleotides. Nucleic Acid Ther 2015; 25(5): 275-84. doi: 10.1089/nat.2014.0528 PMID: 26176274
  193. Corey DR. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat Neurosci 2017; 20(4): 497-9. doi: 10.1038/nn.4508 PMID: 28192393
  194. Prakash V. Spinraza—a rare disease success story. Gene Ther 2017; 24(9): 497. doi: 10.1038/gt.2017.59 PMID: 28963567
  195. Richardson PG, Corbacioglu S, Ho VTV, et al. Drug safety evaluation of defibrotide. Expert Opin Drug Saf 2013; 12(1): 123-36. doi: 10.1517/14740338.2012.749855 PMID: 23228043
  196. Richardson PG, Riches ML, Kernan NA, et al. Phase 3 trial of defibrotide for the treatment of severe veno-occlusive disease and multi-organ failure. Blood 2016; 127(13): 1656-65. doi: 10.1182/blood-2015-10-676924 PMID: 26825712
  197. Corbacioglu S, Cesaro S, Faraci M, et al. Defibrotide for prophylaxis of hepatic veno-occlusive disease in paediatric haemopoietic stem-cell transplantation: an open-label, phase 3, randomised controlled trial. Lancet 2012; 379(9823): 1301-9. doi: 10.1016/S0140-6736(11)61938-7 PMID: 22364685
  198. Veenstra DL, Guzauskas GF, Villa KF, Boudreau DM. The budget impact and cost-effectiveness of defibrotide for treatment of veno-occlusive disease with multi-organ dysfunction in patients post-hematopoietic stem cell transplant. J Med Econ 2017; 20(5): 453-63. doi: 10.1080/13696998.2016.1275652 PMID: 28008770
  199. Ramlogan-Steel CA, Murali A, Andrzejewski S, Dhungel B, Steel JC, Layton CJ. Gene therapy and the adeno-associated virus in the treatment of genetic and acquired ophthalmic diseases in humans: Trials, future directions and safety considerations. Clin Exp Ophthalmol 2019; 47(4): 521-36. doi: 10.1111/ceo.13416 PMID: 30345694
  200. Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65 -mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet 2017; 390(10097): 849-60. doi: 10.1016/S0140-6736(17)31868-8 PMID: 28712537
  201. Dias MF, Joo K, Kemp JA, et al. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog Retin Eye Res 2018; 63: 107-31. doi: 10.1016/j.preteyeres.2017.10.004 PMID: 29097191
  202. Adams D, Cauquil C, Labeyrie C, Beaudonnet G, Algalarrondo V, Théaudin M. TTR kinetic stabilizers and TTR gene silencing: a new era in therapy for familial amyloidotic polyneuropathies. Expert Opin Pharmacother 2016; 17(6): 791-802. doi: 10.1517/14656566.2016.1145664 PMID: 26800456
  203. Wood H. 2FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nat Rev Neurol 2018; 14: 570-0. doi: 10.1038/s41582-018-0065-0
  204. Adams D, Suhr OB, Dyck PJ, et al. Trial design and rationale for APOLLO, a Phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy. BMC Neurol 2017; 17(1): 181-1. doi: 10.1186/s12883-017-0948-5 PMID: 28893208
  205. Al-Zaidy S, Pickard AS, Kotha K, et al. Health outcomes in spinal muscular atrophy type 1 following AVXS-101 gene replacement therapy. Pediatr Pulmonol 2019; 54(2): 179-85. doi: 10.1002/ppul.24203 PMID: 30548438
  206. Dabbous O, Sproule DM, Feltner DE, et al. Event-free survival and motor milestone achievement following AVXS-101 and nusinersen interventions contrasted to natural history for Type I spinal muscular atrophy patients. Neurology 2019; 92(15) (Suppl): S25.005.
  207. Lee H, Choi K, Kim H, et al. INVOSSA-K induces an anti-inflammatory environment in a rat mia model via macrophage polarization. Osteoarthritis Cartilage 2018; 26: S125. doi: 10.1016/j.joca.2018.02.272
  208. Aiuti A, Roncarolo MG, Naldini L. Gene therapy for ADA-SCID, the first marketing approval of an ex vivo gene therapy in Europe: paving the road for the next generation of advanced therapy medicinal products. EMBO Mol Med 2017; 9(6): 737-40. doi: 10.15252/emmm.201707573 PMID: 28396566
  209. Cicalese MP, Ferrua F, Castagnaro L, et al. Gene therapy for adenosine deaminase deficiency: a comprehensive evaluation of short- and medium-term safety. Mol Ther 2018; 26(3): 917-31. doi: 10.1016/j.ymthe.2017.12.022 PMID: 29433935
  210. Mullard A. 2016 EMA drug approval recommendations. Nature Publishing Group 2017. doi: 10.1038/nrd.2017.17
  211. Ciceri F, Bonini C, Stanghellini MTL, et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I–II study. Lancet Oncol 2009; 10(5): 489-500. doi: 10.1016/S1470-2045(09)70074-9 PMID: 19345145
  212. Bonini C, Peccatori J, Stanghellini MTL, et al. Haploidentical HSCT: a 15-year experience at San Raffaele. Bone Marrow Transplant 2015; 50(S2) (Suppl. 2): S67-71. doi: 10.1038/bmt.2015.99 PMID: 26039212
  213. Abken H. Adoptive therapy with CAR redirected T cells: the challenges in targeting solid tumors. Immunotherapy 2015; 7(5): 535-44. doi: 10.2217/imt.15.15 PMID: 26065478
  214. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med 2018; 378(5): 439-48. doi: 10.1056/NEJMoa1709866 PMID: 29385370
  215. Schuster SJ, Bishop MR, Tam CS, et al. Primary analysis of juliet: a global, pivotal, phase 2 Trial of CTL019 in adult patients with relapsed or refractory diffuse large B-cell lymphoma. Blood 2017; 130: 577-7. doi: 10.1016/j.clml.2017.07.213
  216. Roberts ZJ, Better M, Bot A, Roberts MR, Ribas A. Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL. Leuk Lymphoma 2018; 59(8): 1785-96. doi: 10.1080/10428194.2017.1387905 PMID: 29058502
  217. Locke FL, Neelapu SS, Bartlett NL, et al. Clinical and biologic covariates of outcomes in ZUMA-1: A pivotal trial of axicabtagene ciloleucel (axi-cel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma (r-NHL). J Clin Oncol 2017; 35(15_suppl): 7512-2. doi: 10.1200/JCO.2017.35.15_suppl.7512
  218. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-Cell therapy in refractory large B-Cell lymphoma. N Engl J Med 2017; 377(26): 2531-44. doi: 10.1056/NEJMoa1707447 PMID: 29226797
  219. Lorentino F, Labopin M, Fleischhauer K, et al. The impact of HLA matching on outcomes of unmanipulated haploidentical HSCT is modulated by GVHD prophylaxis. Blood Adv 2017; 1(11): 669-80. doi: 10.1182/bloodadvances.2017006429 PMID: 29296709
  220. Cho J, Kim T, Shin J, Kang S, Lee B. A phase III clinical results of INVOSSA™(TissueGene C): A clues for the potential disease modifying OA drug. Cytotherapy 2017; 19(5): S148. doi: 10.1016/j.jcyt.2017.02.221
  221. Price D, Scott J. Progress to date. Clin Trials 2021; 18(6): 706-10. doi: 10.1177/17407745211050580 PMID: 34657476
  222. Mavroudi M, Zarogoulidis P, Porpodis K, et al. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy. J Cancer Res Ther (Manch) 2014; 2(1): 22-33. doi: 10.14312/2052-4994.2014-4 PMID: 24860662
  223. Brown DG, Wobst HJ. Analysis of orphan designation status for FDA approved drugs and case studies in oncology, neuroscience and metabolic diseases. Bioorg Med Chem 2023; 80: 117-70. doi: 10.1016/j.bmc.2023.117170

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers