MORPHOLOGICAL CHARACTERISTICS OF NANOLEVEL MECHANISMS THAT DETERMINE STRENGTH AND PHYSICOCHEMICAL PROPERTIES OF BONE TISSUE



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

On the basis of literature data and the authors’ original research, morphologic characteristics of mechanisms that determine mechanical properties of bone structures at nanolevel are summarized, and future perspectives and methods of research are formulated. It is shown that one of the mechanisms defining mechanical properties of the skeleton is represented by the bonds formed between organic matrix components that are mediated by bivalent ions. A hypothesis is formulated that bonds between minerals through their hydrate layer play the main role in the establishment of hierarchical mineral matrix organization and its properties. Probing bone structures by x-ray spectral methods like XANES spectroscopy was suggested as a perspective technology for investigating local electron and atomic structure of hydrate layer and its participation in the functioning of nanolevel mechanisms defining mechanical and physico-chemical bone tissue properties. It is suggested that such morphological investigation with the use of calculated simulation could be helpful in getting a more complete knowledge of mechanical characteristics and properties of bone matrix mineral component.

Full Text

Restricted Access

About the authors

A. S. Avrunin

Russian R. R. Vreden Scientific Research Institute of Trauma tology and Orthopedics

Email: a_avrunin@mail.ru

A. A. Pavlychev

St. Petersburg State University

Yu. I. Denisov-Nikolskiy

Russian Institute of Medicinal and Aromatic Plants

A. A. Doktorov

Russian Institute of Medicinal and Aromatic Plants

Email: doctorovaa@mail.ru

A. S. Vinogradov

St. Petersburg State University

E. O. Filatova

St. Petersburg State University

Yu. S. Krivosenko

St. Petersburg State University

I. I. Shubnyakov

Russian R. R. Vreden Scientific Research Institute of Trauma tology and Orthopedics

References

  1. Аврунин А. С., Мельников Б. Е., Паршин Л. К. и др. О физической природе жёсткости и прочности костной ткани // Науч.-тех. ведомости СПбГПУ. 2010. Т. 106, № 3. С. 205-210.
  2. Аврунин А. С., Семёнов А. С., Фёдоров И. В. и др. Влияние минеральной связи между объединениями кристаллитов на механические свойства костного матрикса. Моделирование методом конечных элементов // Травматол. и ортопед. России. 2013. № 2. С. 72-83.
  3. Аврунин А. С., Тихилов Р. М., Паршин Л. К., Мельников Б. Е. Иерархическая организация скелета - фактор, регламентирующий структуру усталостных повреждений. Часть II. Гипотетическая модель формирования и разрушения связей между объединениями кристаллитов // Травматол. и ортопед. России. 2010. № 1. С. 48-57.
  4. Аврунин А. С., Тихилов Р. М., Паршин Л. К., Шубняков И. И. Наноуровневый механизм жесткости и прочности кости // Травматол. и ортопед. России. 2008. Т. 2, № 48. С. 77-83.
  5. Аврунин А. С., Тихилов Р. М., Паршин Л. К., Шубняков И. И. Механизм жесткости и прочности в норме и при старении организма. Наноуровневая модель // Гений ортопедии. 2008. № 3. С. 59-66.
  6. Аврунин А. С., Тихилов Р. М., Шубняков И. И. и др. Иерархия спиральной организации структур скелета. Взаимосвязь структуры и функции // Морфология. 2010. Т. 138, вып. 6. С. 69-75.
  7. Виноградов А. С. Резонансы формы в ближней тонкой структуре ультрамягких рентгеновских спектров поглощения молекул и твердых тел: Автореф. дис. … д-ра физ.-мат. наук. Л., 1987.
  8. Денисов-Никольский Ю. И., Жилкин Б. А., Докторов А. А., Матвейчук И. В. Ультраструктурная организация минерального компонента пластинчатой костной ткани у людей зрелого и старческого возраста // Морфология. 2002. Т. 122, вып. 5. С. 79-83.
  9. Денисов-Никольский Ю. И., Миронов С. П., Омельяненко Н. П., Матвейчук И. В. Актуальные проблемы теоретической и клинической остеоартрологии. М.: Типография «Новости», 2005.
  10. Докторов А. А., Денисов-Никольский Ю. И., Жилкин Б. А. Структурная организация костного минерала // Бюл. экспер. биол. 1996. Т. 122, № 12. С. 687-691.
  11. Жилкин Б. А., Денисов-Никольский Ю. И., Докторов А. А. Структурная организация минерального компонента пластинчатой кости и процесс его формирования // Успехи соврем. биол. 2003. Т. 123, № 6. С. 590-598.
  12. Клюшина Е. С., Кривосенко Ю. С., Павлычев А. А. Пространственно-временные динамические системы в фотоионизации внутренней оболочки для свободных молекул, кластеров и твердых тел // Совр. математика. Фундам. направления. 2013. Т. 48. С. 61-74.
  13. Ньюман У., Ньюман М. Минеральный обмен кости. М., Издво иностр. лит-ры, 1961.
  14. Павлычев А. А., Виноградов А. С., Степанов А. П., Шулаков А. С. Динамические эффекты формирования локализованных состояний в ультрамягкой рентгеновской области спектра // Оптич. спектроскопия. 1993. Т. 75. С. 554-578.
  15. Akkus O., Yeni Y. N., Wasserman N. Fracture mechanics of cortical bone tissue: a hierarchical perspective // Biomed. Engineering. 2004. Vol. 32, № 5-6. P. 379-425.
  16. Bazin D., Chappard C., Combes C. et al. Diffraction techniques and vibrational spectroscopy opportunities to characterise bones // Osteoporos Int. 2009. Vol. 20, № 6. P. 1065-1075.
  17. Brown M. A., Faubel M., Winter B. X-ray photo- and resonant Auger-electron spectroscopic studies of liquid water and aqueous solutions // Annu. Rep. Prog. Chem. 2009. Vol. 105. P. 174-212.
  18. Burr D. B. The contribution of the organic matrix to bone’s material properties // Bone. 2002. Vol. 31, № 1. P. 8-11.
  19. Cadena E. A., Schweitzer M. H. Variation in osteocytes morphology vs bone type in turtle shell and their exceptional preservation from the Jurassic to the present // Bone. 2012. Vol. 51, № 3. P. 614-620.
  20. Casalbou S., Combes C., Eichert D., Rey C. Adaptative physico-chemistry of bio-related calcium phosphates // J. Mater. Chem. 2004. Vol. 14. P. 2148-2153.
  21. Cowin S. C. The significance of bone microstructure in mechanotransduction // J. Biomechanics. 2007. Vol. 40, (Suppl. 1). P. S105-S109.
  22. Crane N. J., Popescu V., Morris M. D. et al. Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization // Bone. 2006. Vol. 39, № 3. P. 434-442.
  23. Currey J. Sacrificial bonds heal bone // Nature. 2001. Vol. 414, № 6865. P. 699.
  24. Currey J. D. Three analogies to explain the mechanical properties of bone // Biorheology. 1964. Vol. 2. P. 1-10.
  25. Dauphin Y. Potential of the diffuse reflectance infrared fourier transform (drift) method in paleontological studies of bones // Appl. Spectrosc. 1993. Vol. 47. P. 52-55.
  26. Dauphin Y., Cuif J.-P., Salome M. et al. Microstructure and chemical composition of giant avian eggshells // Anal. Bioanal. Chem. 2006. Vol. 386. P. 1761-1771.
  27. Fantner G. E., Hassenkam T., Kindt J. H. et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture // Nature materials. 2005. Vol. 41, № 8. P. 612-616.
  28. Filatova E. O., Kozhevnikov I. V., Sokolov A. A. et al. Soft x-ray reflectometry, hard x-ray photoelectron spectroscopy and trans mission electron microscopy investigations of the internal structure of TiO2(Ti)/SiO2/Si stacks // Sci. Technol. Adv. Mater. 2012. Vol. 13. P. 015001_1-13.
  29. Flesch R., Serdariglu E., Brykalova X. O. et al. Gas-to-cluster effects in S 2p excited SF6 // J. Chem. Phys. 2013. Vol. 138. P. 144302_1-9.
  30. Frank-Kamenetskaya O., Koltsov A., Kuzmina M. et al. Ion substitutions and non-stoichiometry of carbonated apatite(CaOH) synthesised by precipitation and hydrothermal methods // J. Molecular Structure. 2011. Vol. 992, № 1-3. P. 9-18.
  31. Freeman J. J., Wopenka B., Silva M. J., Pasteris J. D. Raman spectroscopic detection of changes in bioapatite in mouse femora as a function of age and in vitro fluoride treatment // Calcif. Tissue Int. 2001. Vol. 68, № 3. P. 156-162.
  32. Frost H. M. Defining osteopenias and osteoporoses: another view (with insights from a New Paradigm) // Bone. 1997. Vol. 20, № 5. P. 385-391.
  33. Hiller J. C., Thompson T. J. U., Evison M. P. et al. Bone mineral change during experimental heating: an X-ray scattering investigation // Biomaterials. 2003. Vol. 24, № 28. P. 5091-5097.
  34. Hüfner S. Photoelectron Spectroscopy. Berlin: Springer-Verlag, 1995.
  35. Jager I., Fratzl P. Mineralized сollagen fibrils: a mechanical model with a staggered arrangement of mineral particles // Biophys. J. 2000. Vol. 79, № 4. P. 1737-1746.
  36. Ji B., Gao H., Hsia J. How do slender mineral crystals resist buckling in biological materials? // Philosophical magazine letters. 2004. Vol. 84, № 10. P. 631-641.
  37. Knothe Tate M. L. Multiscale computational engineering of bones: state of the art insights for the future. In: Engineering of Functional Skeletal Tissues. London: Springer-Verlag, 2007. P. 141-160.
  38. Laurencin D., Wong A., Chrzanowski W. et al. Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy // Phys. Chem. Chem. Phys. 2010. Vol. 12, № 5. P. 1081-1091.
  39. Morris M. D., Finney W. F. Recent developments in Raman and infrared spectroscopy and imaging of bone tissue // Spectroscopy. 2004. Vol. 18, № 2. P. 155-159.
  40. Movasaghi Z., Rehman S., Rehman I. Fourier transform infrared (FTIR) spectroscopy of biological tissues // Applied Spectrosc. Rev. 2008. Vol. 43, № 2. P. 134-179.
  41. Nilsson A., Pettersson L. G. M. Chemical bonding on surfaces probed by X-ray emission spectroscopy and density functional theory // Surf. Sci. Reports. 2004. Vol. 55. P. 49-167.
  42. Pasteris J. D., Wopenka B., Freeman J. J. et al. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials // Biomaterials. 2003. Vol. 25, № 2. P. 229-238.
  43. Pasteris J. D., Yoder C. H., Wopenka B. Molecular water in nominally unhydrated carbonated hydroxylapatite: The key to a better understanding of bone mineral // Am. Mineralogist. 2014. Vol. 99, № 1. P. 16-27.
  44. Piga G., Thompson T. J. U., Malgosa A., Enzo S. The Potential of X-ray diffraction in the analysis of burned remains from forensic contexts // J. Forensic. Sci. 2009. Vol. 54, № 3. P. 534-539.
  45. Prendergast P. J. Mechanics applied to skeletal ontogeny and phylogeny // Meccanica. 2002. Vol. 37. P. 317-334.
  46. Rehman I., Smith R., Hench L. L., Bonfield W. Structural evaluation of human and sheer, bone and comparison with synthetic hydroxyapatite by FT-Raman spectroscopy // J. Biomed. Materials Res. 1995. Vol. 29, № 10. P. 1287-1294.
  47. Rey C., Collins B., Goehl T. et al. The carbonate environment in bone mineral: a resolution-enhanced Fourier Transform Infrared Spectroscopy Study // Calcif. Tissue Int. 1989. Vol. 45, № 3. P. 157-164.
  48. Rey C., Miquel J. L., Facchini L. et al. Hydroxyl groups in bone mineral // Bone. 1995. Vol. 16, № 5. P. 583-586.
  49. Rey C., Renugopalakrishnan V., Shimizu M. et al. A resolution-enhanced Fourier transform infrared spectroscopic study of the environment of the CO3(2-) ion in the mineral phase of enamel during its formation and maturation // Calcif. Tissue Int. 1991. Vol. 49, № 4. P. 259-268.
  50. Rey C., Shimizu M., Collins B., Glimcher M. J. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the upsilon 4 PO4 domain // Calcif. Tissue Int. 1990. Vol. 46, № 6. P. 384-394.
  51. Rulis P., Ouyang L., Ching W. Y. Electronic structure and bonding in calcium apatite crystals: Hydroxyapatite, fluorapatite, chlorapatite, and bromapatite // Physical Rev. В. 2004. Vol. 70. P. 155104_1-7.
  52. Simonov K. A., Vinogradov A. S., Brzhezinskaya M. M. et al. Features of metal atom 2p excitations and electronic structure of 3d-metal phthalocyanines studied by X-ray absorption and resonant photoemission // Appl. Surface Sci. 2013. Vol. 267. P. 132-135.
  53. Skerry T. M. One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture // J. Musculoskelet Neuronal Interact. 2006. Vol. 6, № 2. P. 122-127.
  54. Skerry T. M. The response of bone to mechanical loading and disuse: Fundamental principles and influences on osteoblast/ osteocyte homeostasis // Arch. Biochem. Biophys. 2008. Vol. 473, № 2. P. 117-123.
  55. Stöhr J. NEXAFS-spectroscopy. Berlin: Springer, 1992.
  56. Taylor A. J., Rendina E., Smith B. J., Zhou D. H. Analyses of mineral specific surface area and hydroxyl substitution for intact bone // Chem. Phys. Lett. 2013. Vol. 588. P. 124-130.
  57. Thompson J. B., Kindt J. H., Drake B. et al. Bone indentation recovery time correlates with bond reforming time // Nature. 2001. Vol. 414, № 13. P. 773-775.
  58. Tsai T. W. T., Chan J.С. С. Recent progress in the solid-state NMR studies of biomineralization. Chapter 1 // Annu. Rep. NMR Spectrosc. 2011. Vol. 73. P. 1-61.
  59. Vinogradov A. S., Fedoseenko S. I., Krasnikov S. A. et al. Low-lying unoccupied electronic states in 3d transition-metal fluorides probed by NEXAFS at the F1s threshold // Phys. Rev. B. 2005. Vol. 71, № 4. P. 045127_1-11
  60. Wilson E. E., Awonusi A., Morris M. D. et al. Highly ordered interstitial water observed in bone by nuclear magnetic resonance // J. Bone Mineral Res. 2005. Vol. 20, № 4. P. 625- 634.
  61. Wilson E. E., Awonusi A., Morris M. D. et al. Three structural roles for water in bone observed by solid-state NMR // Biophys. J. 2006. Vol. 90, № 10. P. 3722-3731.
  62. Wolff J. Das Gesetz der Transformation der inneren Architectur der Knochen bei pathologischen Veränderungen der ausseren knochenform // Sitzungsber. d. Kgl. Preuss. Akad. Wissensch. 1884. Bd. 54. S. 849-851.
  63. Yoder C. H., Pasteris J. D., Worcester K. N., Schermerhorn D. V. Structural water in carbonated hydroxylapatite and fluorapatite: confirmation by solid state 2H NMR // Calcif. Tissue Int. 2012. Vol. 90, № 1. P. 60-67.
  64. Yuan F., Stock S. R., Haeffner D. R. et al. A new model to simulate the elastic properties of mineralized collagen fibril // Biomech. Model. Mechanobiol. 2011. Vol. 10. P. 147-160.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies