INTERDEPENDENT CHANGES OF THE AXON AND SCHWANN CELL IN THE PROCESS OF REACTIVE REMODELING OF A MYELINATED NERVE FIBER



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Using the inverted phase-contrast microscope, the living undamaged frog sciatic nerve fibers and the fibers mechanically injured to varying degrees, were studied. It was found that the swelling of myelin incisures (MI) (of Schmidt–Lanterman) occured according to the principles similar to those controlling the changes of the myelin gap (node of Ranvier) and depended on the swelling of a Schwann cell (SC) perikaryon. It was detected that this was a single process, which which could be united in a complex of nonspecific changes of a myelinated nerve fiber. It was also demonstrated that under the action of mechanical injury and hypotonic solution, swelling of MI, nodes of Ranvier and SC perikaryon occurred without modifications of outer fiber diameter, due to the pronounced local axon thinning. Electron microscopic study of the cytoskeletal axonal structures showed that there was not a simple local contraction of an axon, but a significant local increase in the density of cytoskeletal components of the axoplasm (by 200–275%). Reactive reversible remodeling of a myelinated fiber suggests a new type of interaction between the axon and SC, the mechanism of reversible translocation of liquid axoplasmic fraction to the glial cell cytoplasm.

Full Text

Restricted Access

About the authors

T. N. Kokurina

RAS I. P. Pavlov Institute of Physiology

Email: kokurina.tatyana@mail.ru

O. S. Sotnikov

RAS I. P. Pavlov Institute of Physiology

Email: sotnikov@kolt.infran.ru

S. A. Novakovskaya

Institute of Physiology

Email: novakovskaya@tut.by

A. S. Yegorov

Institute of Physiology

R. V. Kozhevetz

Institute of Physiology

S. D. Solnuschkin

RAS I. P. Pavlov Institute of Physiology

V. N. Chikhman

RAS I. P. Pavlov Institute of Physiology

Email: chi@physiology.spb.ru

References

  1. Быков В. Н. Морфофункциональная характеристика седалищного нерва в норме и при недостаточности функций печени: Автореф. дис. … канд. мед. наук. СПб., 2003.
  2. Жихорев В. И. Судебно-медицинская оценка дезорганизации кардиальных нервных структур при некоторых видах смерти: Автореф. дис. … канд. мед. наук. М., 2007.
  3. Запрянова Э., Сотников О. С., Сергеева С. С. и др. Реакция аксонов предшествует демиелинизации в экспериментальных моделях рассеянного склероза. Морфология, 2002, т. 122, вып. 5, с. 54–59.
  4. Русанова Д. В. Закономерности и механизмы поражения периферических нервов при воздействии металлической ртути и комплекса токсических веществ: Автореф. дис. … канд. биол. наук. Иркутск, 2007.
  5. Семченко В. В. и Степанов С. С. Нейроглия. В кн.: Руководство по гистологии. СПб., СпецЛит, 2011, с. 519–532.
  6. Сотников О. С. Динамика структуры живого нейрона. Л., Наука, 1985.
  7. Allt G. The node of Ranvier in experimental allergic neuritis: an electron microscope study. J. Neurocytol., 1975, v. 4, № 1, p. 63–76.
  8. Bay V. and Butt A. M. Relationship between glial potassium re gulation and axon excitability: a role for glial Kir4.1 channels. Glia, 2012, v. 60, № 4, p. 651–660.
  9. Cajal S. R. Sobre un nuevo proceder de impregnacion de la neuroglia y sus resultados en los centros nerviosos del hombre y animals. Trab. Lab. Invest. Biol., 1913, v. 11, p. 219–237.
  10. Casanova B., Martínez-Bisbal M.C., Valero C. et al. Evidence of Wallerian degeneration in normal appearing white matter in the early stages of relapsing-remitting multiple sclerosis: a HMRS study. J. Neurol., 2003, v. 250, p. 22–28.
  11. Gaudet A. D., Popovich P. G. and Ramer M. S. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J. Neuroinflammation, 2011, v. 8, p. 110.
  12. Kawagashira Y., Koike H., Tomita M. et al. Morphological progression of myelin abnormalities in IgM-monoclonal gammopathy of undetermined significance anti-myelin-associated glycoprotein neuropathy. J. Neuropathol. Exp. Neurol., 2010, v. 69, p. 1143– 1157.
  13. Kilinc D., Gallo G. and Barbee K. A. Mechanical membrane injury induces axonal beading through localized activation of calpain. Exp. Neurol., 2009, v. 219, p. 553–561.
  14. Malkinson G. and Spira M.E. Clustering of excess growth resources within leading growth cones underlies the recurrent «deposition» of varicosities along developing neurites. Exp. Neurol., 2010, v. 225, p. 140–153.
  15. Mastaglia F.L., McDonald W.I., Watson J.V. and Jogendran K. Effects of x-radiation on the spinal cord: an experimental study of the morphological changes in central nerve fibres. Brain, 1976, v. 99, p. 101–122.
  16. Nans A., Einheber S., Salzer J. L. et. al. Electron tomography of paranodal septate-like junctions and the associated axonal and glial cytoskeletons in the central nervous system. J. Neurosci. Res., 2011, v. 89, p. 310–319.
  17. Olmarker K., Nordborg C., Larsson K. et al. Ultrastructural changes in spinal nerve roots induced by autologous nucleus pulposus. Spine, 1996, v. 21, p. 411–414.
  18. Ransom B.R. and Fern R. Does astrocytic glycogen benefit axon function and survival in CNS white matter during glucose deprivation? Glia, 1997, v. 21, p. 134–141.
  19. Reynolds R.J., Little G.J., Lin M. et al. Imaging myelinated nerve fibres by confocal fluorescence microscopy: individual fibres in whole nerve trunks traced through multiple consecutive internodes. J. Neurocytol., 1994, v. 23, p. 555–564.
  20. Scherer S. S., Arroyo J. and Peles E. Functional organization of the nodes of Ranvier. J. In: Myelin Biology and Disorders, Amsterdam, Boston et al., Elsevier, Acad. Press, 2004, v. 1, p. 89–107.
  21. Speidel C. C. The experimental induction of visible structural changes in single nerve fibres in living frog tadpoles. Cold Spring Harbor Symp. Quant. Biology, 1936, v. 4, p. 13–17.
  22. Takahashi M., Billups B., Rossi D. et al. The role of glutamate transporters in glutamate homeostasis in the brain. J. Exp. Biol., 1997, v. 200, Pt 2, p. 401–409.
  23. Trapp B. D. and Kidd G. J. Structure of the myelinated axon. In: Myelin Biology and Disorders, Amsterdam, Boston et al., Elsevier, Acad. Press, 2004, v. 1, p. 3–28.
  24. Yin X., Kidd G. J., Nave K.-A. et al. P0 Protein is required for and can induce formation of Schmidt-Lantermann incisures in myelin internodes. J. Neurosci., 2008, v. 28, p. 7068–7073.
  25. Yu R. C. and Bunge R. P. Damage and repair of the peripheral myelin sheath and node of Ranvier after treatment with trypsin. J. Cell Biol., 1975, v. 64, p. 1–14.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies