MORPHOLOGICAL ANALYSIS OF THE RESULTS OF INJECTION OF THE AUTOLOGOUS STROMAL MARROW-DERIVED STEM CELLS INTO THE UTERINE SCAR IN RATS

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The results of injection of the autologous stromal (mesenchymal) marrow-derived stem cells (ASMSC) transfected with green fluorescent protein (GFP) gene into the rat uterine scar were studied by methods of light microscopy. One week after ASMSC injection into the formed scar on the right side (2 months after the uterine horn ligation), large groups of blood vessels containing the formed elements of blood were found, while these were absent in the uterine scar on the opposite side. The study of the unstained sections in the reflected ultraviolet light demonstrated bright luminescence in the vessel endothelium and adventitia in the uterine horn scar only at the side of ASMSC injection. It is suggested that after the injection of ASMSC in the uterine horn scar, they form blood vessels as result of a differentiation into endotheliocytes and pericytes. The expression of GFP gene not only in vascularl endothelium, but also in their adventitia, indicated that the differentiation ASMSC is possible in both endotheliocytes and in pericytes.

References

  1. Майбородин И.В., Майбородина Е.И., Якимова Н.В. и др. Абсорбируемый шовный материал в организме. Арх. пат., 2008, т. 70, № 2, с. 51-53.
  2. Bergers G. and Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol., 2005, v. 7, № 4, p. 452-464.
  3. Campagnoli C., Roberts I.A., Kumar S. et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 2001, v. 98, № 8, p. 2396-2402.
  4. Carmeliet P. and Jain R.K. Angiogenesis in cancer and other diseases. Nature, 2000, v. 407, № 6801, p. 249-257.
  5. Carmeliet P. Manipulating angiogenesis in medicine. J. Intern. Med., 2004, v. 255, № 5, p. 538-561.
  6. Carmeliet P. and Luttun A. The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis. Thromb. Haemost., 2001, v. 86, № 1, p. 289-297.
  7. Cho H., Kozasa T., Bondjers C. et al. Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. FASEB J., 2003, v. 17, № 3, p. 440-442.
  8. Creazzo T.L., Godt R.E., Leatherbury L. et al. Role of cardiac neural crest cells in cardiovascular development. Annu. Rev. Physiol., 1998, v. 60, p. 267-286.
  9. Dimmeler S. and Leri A. Aging and disease as modifiers of efficacy of cell therapy. Circ. Res., 2008, v. 102, № 11, p. 1319-1330.
  10. Fukushima S., Varela-Carver A., Coppen S.R. et al. Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation, 2007, v. 115, № 17, p. 2254-2261.
  11. Gittenberger-de Groot A.C., DeRuiter M.C., Bergwerff M. and Poelmann R.E. Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler. Thromb. Vasc. Biol., 1999, v. 19, № 7, p. 1589-1594.
  12. Grauss R.W., Winter E.M., Tuyn van J. et al. Mesenchymal stem cells from ischemic heart disease patients improve left ventricular function after acute myocardial infarction. Am. J. Physiol. Heart Circ. Physiol., 2007, v. 293, № 4, p. H2438-H2447.
  13. Hellström M., Kalén M., Lindahl P. et al. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 1999, v. 126, № 14, p. 3047-3055.
  14. Hu X., Yu S.P., Fraser J.L. et al. Transplantation of hypoxiapreconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J. Thorac. Cardiovasc. Surg., 2008, v. 135, № 4, p. 799-808.
  15. Huss R. Isolation of primary and immortalized CD34-hematopoietic and mesenchymal stem cells from various sources. Stem Cells, 2000, v. 18, № 1, p. 1-9.
  16. Isner J.M. Tissue responses to ischemia: local and remote responses for preserving perfusion of ischemic muscle. J. Clin. Invest., 2000, v. 106, № 5, p. 615-619.
  17. Jackson K.A., Majka S.M., Wang H. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest., 2001, v. 107, № 11, p. 1395-1402.
  18. Kamihata H., Matsubara H., Nishiue T. et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation, 2001, v. 104, № 9, p. 1046-1052.
  19. Kocher A.A., Schuster M.D., Szabolcs M.J. et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med, 2001, v. 7, № 4, p. 430-436.
  20. Nakajima Y., Mironov V., Yamagishi T. et al. Expression of smooth muscle alpha-actin in mesenchymal cells during formation of avian endocardial cushion tissue: a role for transforming growth factor beta3. Dev. Dyn, 1997, v. 209, № 3, p. 296-309.
  21. Poole J.C., Sabiston D.C. Jr, Florey H.W. and Allison P.R. Growth of endothelium in arterial prosthetic grafts and following endarterectomy. Surg. Forum, 1962, v. 13, p. 225-227.
  22. Ribatti D., Vacca A., Nico B. et al. Cross-talk between hematopoiesis and angiogenesis signaling pathways. Curr. Mol. Med., 2002, v. 2, № 6, p. 537-543.
  23. Rota M., Padin-Iruegas M.E., Misao Y. et al. Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ. Res., 2008, v. 103, № 1, p. 107-116.
  24. Shi Q., Rafii S., Wu M.H. et al. Evidence for circulating bone marrow-derived endothelial cells. Blood, 1998, v. 92, № 2, p. 362-367.
  25. Shi Q., Wu M.H., Hayashida N. et al. Proof of fallout endothelialization of impervious Dacron grafts in the aorta and inferior vena cava of the dog. J. Vasc. Surg., 1994, v. 20, № 4, p. 546-557.
  26. Stump M.M., Jordan G.L. Jr, Debakey M.E. and Halpert B. Endothelium grown from circulating blood on isolated intravascular dacron hub. Am. J. Pathol., 1963, v. 43, p. 361-367.
  27. Takahashi M., Li T.S., Suzuki R. et al. Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am. J. Physiol. Heart Circ. Physiol., 2006, v. 291, № 2, p. H886-H893.
  28. Tsuji T. and Sawabe M. Elastic fibers in striae distensae. J. Cutan. Pathol., 1988, v. 15, № 4, p. 215-222.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2010 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies