NEURON CONTRACTILE AND ELECTRICAL ACTIVITIES AS AFFECTED BY COLCHICINE



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The purpose of this investigation was to analyze the contractile activity of traumatized nerve cell processes and to try to inhibit their retraction by colchicine solution. Isolated living neurons of mollusks (Lymnaea stagnalis and Planorbis corneus vulgaris) were studied using phase contrast and time-lapse microvideorecording. In the control group, contractile activity of nerve cell processes in Ringers solution was detected in 92% of cases. Application of colchicine resulted in the inhibition of retraction of nerve fibers in 86% of neurons. In the experiments designed to study neuron electrical activity, leech Retzius neurons were used. It was found that ganglion incubation in colchicine solution of increased the frequency of spontaneous pulse activity from 0.22 to 0.75imp/s. The amplitude of spontaneous potentials decreased from 46.9 to 37 mV, the threshold was reduced by 18%, spontaneous spike duration increased from 4.3 ms to 7.1 ms, while the latent period of the response to irritating stimulus increased from 25.0 to 37.9 ms. During the irritation with a frequency of 7–10 Hz, neuron generated higher frequency of pulse activity, than in norm. Thus, it was possible to show, that cochicine can inhibit the contractive activity of the traumatized nerve cell processes, preserving an electroexcitable membrane in a satisfactory state. These results suggest that it is possible to partially inhibit the nerve fiber retraction in vivo, thus preventing the diastasis increase in the nerves that impedes their contact surgical approximation and promotes the development of a massive scar in severed area.

Full Text

Restricted Access

About the authors

S. S. Sergeyeva

RAS I. P. Pavlov Institute of Physiology

N. Yu. Vasyagina

RAS I. P. Pavlov Institute of Physiology

O. S. Sotnikov

RAS I. P. Pavlov Institute of Physiology

Email: ossotnikov@mail.ru

T. V. Krasnova

RAS I. P. Pavlov Institute of Physiology

Ye. A. Gendina

RAS I. P. Pavlov Institute of Physiology

References

  1. Альбертс А., Брей Д., Льюис Р. и др. Молекулярная биология клетки. М., Мир, 1994, т. 3.
  2. Васильев Ю. М. Клетка как архитектурное чудо. Соросовский образовательный журн., 1996, № 2, с. 9–11.
  3. Васягина Н. Ю., Сергеева С.С, Сотников О. С. и др. Влияние цитохолазина В на сократительную активность поврежденного нерва. Цитология, 2012, т. 54, № 9, с. 671–672.
  4. Камия Н. Н. Движение протоплазмы. М., Мир, 1962.
  5. Коштоянц Х. С. Основы сравнительной физиологии. Т. II. Сравнительная физиология нервной системы. М., Изд-во АН СССР, 1957.
  6. Сергеева С. С. Электрофизиологическое исследование топографии аксодендритных синапсов нейрона Ретциуса пиявки. Физиол. журн. им. И. М. Сеченова, 1995, т. 84, № 10, с. 117–120.
  7. Сотников О. С., Васягина Н. Ю., Рыбакова Г. И. и Чепур С. В. Попытка ингибирования сокращения нервных отростков в среде, лишенной ионов кальция. Бюл. экспер. биол., 2010, т. 149, № 2, с. 232–235.
  8. Узбекова Т. А., Чернова И. А., Савчук В. И. и др. Метод применения колхицина к блуждающему нерву крысы с целью избирательного действия на аксональный транспорт. Бюл. экспер. биол., 1981, т. 92, № 11, с. 631–634.
  9. Aguilar C. E., Bisby M. A., Cooper E. et al. Evidence that transport of trophic factors is involved in the regulation of peripheral nerve fields in salamanders. J. Physiol., 1973, v. 234, № 2, p. 449–464.
  10. Bai R., Pei X. F., Boyé O. et al. Identification of cysteine 354 of beta-tubulin as part of the binding site for the A ring of colchicine. Biol Chem., 1996, v. 271, № 21, p. 12639–12645.
  11. Bouron A. Colchicine affects protein kinase C-induced modulation of synaptic transmission in cultured hippocampal pyramidal cells. FEBS Lett., 1997, v. 404, № 2–3, p. 221–226.
  12. Bracey K., Ju M., Tian C. et al. Tubulin as a binding partner of the heag2 voltage-gated potassium channel. J. Membr. Biol., 2008, v. 222, № 3, p. 115–125.
  13. Coulon P., Wüsten H. J., Hochstrate P. et al. Swelling-activated chloride channels in leech Retzius neurons. J. Exp. Biol., 2008, v. 211, Pt 4, p. 630–41.
  14. Gordiner J., Overall R. and Marc J. The microtubule cytoskeleton acts as a key downstream effector of neurolransmitter signaling. Synapse. 2011, v. 65, p. 249–256.
  15. He Y., Yu W. and Baas P. W. Microtubule reconfiguration during axonal retraction induced by nitric oxide. J. Neurosci., 2002, v.22, p. 5982–5991.
  16. Hou S. T., Jiang S. X. and Smith R. A. Permissive and repulsive cues and signaling pathways of axonal outgrowth and regeneration. Jnt. Rev. Cell Mol. Biol., 2008, v. 267, p. 125–181.
  17. Huang S. H., Wang Y. I., Tseng G. F. et al. Active endocytosis and microtubule remodeling restore compressed pyramidal neuron morphology in rat cerebral cortex. Cell Mol. Neurobiol., 2012.
  18. Li J. J., Lee S. H., Kim D. K. et al. Colchicine attenuates inflammatory cell infiltration and extracellular matrix accumulation in diabetic nephropathy. Am. J. Physiol. Renal. Physiol., 2009, v. 297, № 1, p. 200–209.
  19. Luo L. and O’Leary D. D.M. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci., 2005, v. 28, p. 127–156.
  20. Matsumoto G. Aproposed membrane model for generation of sodium currents in squid giant axons. J. Theor. Biol., 1984, v. 107, p. 649–666.
  21. Mironov S. L. and Richter D. W. Cytoskeleton mediates inhibition of the fast Na+ current in respiratory brainstem neurons during hypoxia. Eur. J. Neurosci., 1999, v. 11, № 5, p. 1831–1834.
  22. Moran D. T. and Varela F. G. Microtubules and sensory transduction. Proc. Natl. Acad. Sci. USA, 1971, v. 68, № 4, p. 757–760.
  23. Sayas C., Ariaens A., Ponsioen B. et al. GSK-3 is activated by the tyrosine kinase Pyk2 during LPA1-mediated neurite retraction. Mol. Biol. Cell, 2006, v. 17, № 4, p. 1834–1844.
  24. Schafer R. and Reagan P. D. Colchicine reversible inhibits electrical activity in arthropod mechanoreceptors. J. Neurobiol., 1981, v. 12, № 2, p. 155–166.
  25. Solak Y., Atalay H., Polat I. et al. Colchicine treatment in autosomal dominant polycystic kidney disease: many points in common. Med. Hypoth., 2010, v. 74, № 2, p. 314–317.
  26. Speidel C. C. The experimental induction of visible structural changes in single nerve fibres in living frog tatpoles. Cold Spring Harbor Symp. Quant. Biol., 1936, v. 4, p. 13–17.
  27. Tandon A., Bachoo M., Weldon P. et al. Effect of colchicine application to preganglionic axons on choline acetyltransferase activity and acetylcholine content and release in the superior cervical ganglion. J. Neurochem., 1996, v. 66, № 3, p. 1033–1041.
  28. Watts R. I., Hoopfer E. D. and Luo L. Axon pruning during Drosophila metamorphosis. Evidence for local degeneration and requirement of the ubiquitin-proteasome system. Neuron, 2003, v. 38, p. 871–885.
  29. White L. A., Baas P. W. and Heidemann S. R. Microtubule stability in severed axons. J. Neurocitol., 1987, v.16, p. 775–784.
  30. Wong R. and Lichtman I. W. Synapse elimination. In: Fundamentals of Neuroscience. San Diego, CA Acad. Press, 2003, p. 533–554.
  31. Yamada K. M., Spooner B. S., Wessells H. K. et al. Microfilaments and microtubules Proc. Natl. Acad. Sci. USA, 1970, v. 66, p. 1206–1212.
  32. Zhang X-F., Schaefer A. W., Bernette D. T. et al. Rho-dependent contractile responses in the neuronal growth cone are independent of classical peripheral retrograde actin flow. Neuron, 2003, v. 40, № 5, p. 931–944.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies