Distribution of connexin 43 in the human pineal gland

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Connexin 43 (Cx43) is one of the important gap junction proteins of astrocytes and is necessary for intercellular communication. To date, data on gap junctions in the human pineal gland are limited, and Cx43 has not been examined in this organ.

AIM: This study aimed to investigate the distribution of gap junctions in the human pineal gland by simultaneous detection of Cx43 and the astrocyte marker glial fibrillary acidic protein (GFAP).

METHODS: Fixed and paraffin-embedded samples of the human pineal gland (n=4) were used. The study participants were between 19 and 34 years old. For the simultaneous detection of Cx43 and GFAP in the human pineal gland, immunohistochemistry was used, followed by analysis using an LSM 800 confocal laser scanning microscope (Carl Zeiss, Germany).

RESULTS: For the first time, our immunohistochemical study showed the presence of Cx43 in the human pineal gland. The confocal microscopy with double immunolabeling of Cx43 and GFAP visualized the individual clusters of Cx43-containing structures that were undistinguishable under transmitted light microscopy and showed the localization of the Cx43 on the membrane of astrocytes.

CONCLUSION: The proposed method makes it possible to determine Cx43-positive structures in human pineal tissue, which are localized mostly in the area of astrocyte processes.

Full Text

Restricted Access

About the authors

Dina A. Sufieva

Institute of Experimental Medicine

Author for correspondence.
Email: dinobrione@gmail.com
ORCID iD: 0000-0002-0048-2981
SPIN-code: 3034-3137

Cand Sci (Biol.)

Russian Federation, Saint Petersburg

Elena A. Fedorova

Institute of Experimental Medicine

Email: el-fedorova2014@yandex.ru
ORCID iD: 0000-0002-0190-885X
SPIN-code: 5414-4122

Cand. Sci. (Biol.)

Russian Federation, Saint Petersburg

Vladislav S. Yakovlev

Institute of Experimental Medicine

Email: 1547053@mail.ru
ORCID iD: 0000-0003-2136-6717
SPIN-code: 7524-9870
Russian Federation, Saint Petersburg

Igor P. Grigor’ev

Institute of Experimental Medicine

Email: ipg-iem@yandex.ru
ORCID iD: 0000-0002-3535-7638
SPIN-code: 1306-4860

Cand Sci (Biol.)

Russian Federation, Saint Petersburg

References

  1. Gheban BA, Rosca IA, Crisan M. The morphological and functional characteristics of the pineal gland. Med Pharm Rep. 2019;92(3):226–234. doi: 10.15386/mpr-1235
  2. Samanta S. Physiological and pharmacological perspectives of melatonin. Arch Physiol Biochem. 2022;128(5):1346–1367. doi: 10.1080/13813455.2020.1770799
  3. Ahmad SB, Ali A, Bilal M, et al. Melatonin and health: insights of melatonin action, biological functions, and associated disorders. Cell Mol Neurobiol. 2023;43(6):2437–2458. doi: 10.1007/s10571-023-01324-w
  4. Coon SL, Fu C, Hartley SW, et al. Single cell sequencing of the pineal gland: the next chapter. Front Endocrinol (Lausanne). 2019;10:590. doi: 10.3389/fendo.2019.00590
  5. Eugenin EA, Valdebenito S, Gorska AM, et al. Gap junctions coordinate the propagation of glycogenolysis induced by norepinephrine in the pineal gland. J Neurochem. 2019;151(5):558–569. doi: 10.1111/jnc.14846
  6. Møller M, Midtgaard J, Qvortrup K, Rath MF. An ultrastructural study of the deep pineal gland of the Sprague Dawley rat using transmission and serial block face scanning electron microscopy: cell types, barriers, and innervation. Cell Tissue Res. 2022;389(3):531–546. doi: 10.1007/s00441-022-03654-5
  7. Huang SK, Taugner R. Gap junctions between guinea-pig pinealocytes. Cell Tissue Res. 1984;235(1):137–141. doi: 10.1007/BF00213733
  8. García-Mauriño JE, Boya J. Postnatal development of the rabbit pineal gland. A light- and electron-microscopic study. Acta Anat (Basel). 1992;143(1):19–26. doi: 10.1159/000147224
  9. Berthoud VM, Hall DH, Strahsburger E, et al. Gap junctions in the chicken pineal gland. Brain Res. 2000;861(2):257–270. doi: 10.1016/s0006-8993(00)01987-9
  10. Omura Y. Pattern of synaptic connections in the pineal organ of the ayu, Plecoglossus altivelis (Teleostei). Cell Tissue Res. 1984;236(3):611–617. doi: 10.1007/BF00217230
  11. Moller M. The ultrastructure of the human fetal pineal gland. I. Cell types and blood vessels. Cell Tissue Res. 1974;152(1):13–30. doi: 10.1007/BF00224208
  12. Belluardo N, Trovato-Salinaro A, Mudò G, et al. Structure, chromosomal localization, and brain expression of human Cx36 gene. J Neurosci Res. 1999;57(5):740–752.
  13. Korzhevskii DE, editor. Morfologicheskaja diagnostika. Podgotovka materiala dlja gistologicheskogo issledovanija i jelektronnoj mikroskopii: rukovodstvo. Saint Petersburg: SpecLit; 2013. (In Russ).
  14. Sufieva DA, Kirik OV, Korzhevskii DE. Astrocyte markers in the tanycytes of the third brain ventricle in postnatal development and aging in rats. Russ J Dev Biol. 2019;50:146–153. doi: 10.1134/S1062360419030068
  15. Korzhevskij DJe. Osobennosti ispol’zovanija immunogistohimicheskih metodov pri provedenii jeksperimental’nyh issledovanij. In: Odincova IA, Kostjukevich SV, editors. Voprosy morfologii XXI veka. Vypusk 6. Sbornik nauchnyh trudov Vserossijskoj nauchnoj konferencii “Gistogenez, reaktivnost’ i regeneracii tkanej”; 2021 May 13–14, Saint Petersburg. Saint Petersburg: “Izdatel’stvo DEAN”; 2021. P. 45–48. (In Russ).
  16. Beznin GV, Sufieva D., Korzhevskij DJe. Razlichija v rezul’tatah reakcii na belok C23 pri vyjavlenii ego v nejronah gippokampa raznymi sposobami. In: Sbornik materialov III Vserossijskoj molodjozhnoj konferencii s mezhdunarodnym uchastiem, posvjashhjonnoj 100-letiju Fiziologicheskogo obshhestva im. I.P. Pavlova; 2017 Oct 23–25; Saint Petersburg. Saint Petersburg: Institut jeksperimental’noj mediciny; 2017. P. 27–30. (In Russ).
  17. Karpenko MN. Sovremennye metody mikroskopii, osnovannye na ispol’zovanii jeffekta fluorescencii. In: Korzhevskij DJe, editor. Immunocitohimija i konfokal’naja mikroskopija. Saint Petersburg: SpecLit; 2018. P. 8–19. (In Russ).
  18. Tovey SC, Brighton PJ, Bampton ET, et al. Confocal microscopy: theory and applications for cellular signaling. Methods Mol Biol. 2013;937:51–93. doi: 10.1007/978-1-62703-086-1_3
  19. Hodson DJ, Legros C, Desarménien MG, Guérineau NC. Roles of connexins and pannexins in (neuro)endocrine physiology. Cell Mol Life Sci. 2015:72(15):2911–2928. doi: 10.1007/s00018-015-1967-2

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of gap junctions in the human brain pineal gland. Immunohistochemical reaction to Cx43: a — a large number of Cx43-immunopositive structures in the area of blood vessels; b — scattered localization of gap junctions in trabeculae and in the parenchyma of the pineal gland. Bar — 20 microns; an asterisk indicates a blood vessel; arrows indicate Cx43-immunopositive structures.

Download (351KB)
3. Fig. 2. Localization of gap junctions in human pineal astrocytes. Double immunohistochemical reaction for Cx43 (green fluorescence) and GFAP (red fluorescence). Confocal laser microscopy: a — localization of gap junctions in the bodies and processes of astrocytes, single optical section; b — enlarged fragment of Figure 2, a. K — calcification. Arrows indicate clusters of Cx43-immunopositive gap junctions.

Download (457KB)

Copyright (c) 2023 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies