DETECTION OF MORPHOLOGICAL SIGNS OF MAST CELL DEGRANULATION IN HUMAN CHOROID PLEXUS USING DIFFERENT STAINING METHODS AND IMMUNOHISTOCHEMISTRY



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective - to determine the signs of degranulation of mast cells of the human choroid plexus using toluidine blue staining, histochemical reaction to glycosaminoglycans and sulfaminoglycans by alcian blue and immunohistochemical reaction to mast cell tryptase. Materials and methods. The study was performed on fragments of the choroid plexus of the brain taken from 29 individuals aged 14-73 years. To assess the number and location of mast cells, some of the slides were stained with toluidine blue and alcian blue with nuclear fast red counterstaining. Also, immunohistochemical reaction to the human mast cell tryptase was carried out. Results. The applied methods of staining showed different degree of effectiveness in detecting mast cells and their degranulation. It was found that the best method for visualization of mast cells (both granulated and degranulating) in the choroid plexus was tryptase immunohistochemistry. About 60 % of the mast cells in the choroid plexus in the specimens studied were degranulating cells surrounded by an immunopositive halo showing a pericellular localization of tryptase. Conclusions. Tryptase immunohistochemistry was found to be most effective for demonstration mast cells in the choroid plexus of the human brain in comparison to classical methods of toluidine blue and alcian blue staining. The data obtained indicate that degranulation of mast cells in the human choroid plexus belongs to a type of piecemeal degranulation that permanently affects the functional activity of the plexus and, accordingly, the blood-CSF barrier.

Full Text

Restricted Access

About the authors

Ye. A. Fyodorova

Institute of Experimental Medicine

Email: iemmorphol@yandex.ru
Laboratory of Functional Morphology of the Central and Peripheral Nervous System 12 Akademika Pavlova Str., St. Petersburg, 197376

I. P. Grigoriyev

Institute of Experimental Medicine

Laboratory of Functional Morphology of the Central and Peripheral Nervous System 12 Akademika Pavlova Str., St. Petersburg, 197376

M. A. Syrtzova

Institute of Experimental Medicine

Laboratory of Functional Morphology of the Central and Peripheral Nervous System 12 Akademika Pavlova Str., St. Petersburg, 197376

D. A. Sufiyeva

Institute of Experimental Medicine

Laboratory of Functional Morphology of the Central and Peripheral Nervous System 12 Akademika Pavlova Str., St. Petersburg, 197376

A. D. Novikova

Institute of Experimental Medicine

Laboratory of Functional Morphology of the Central and Peripheral Nervous System 12 Akademika Pavlova Str., St. Petersburg, 197376

D. E. Korzhevskiy

Institute of Experimental Medicine; St. Petersburg State University

Laboratory of Functional Morphology of the Central and Peripheral Nervous System; Department of Fundamental Problems of Medicine and Medical Technology, Faculty of Dentistry and Medical Technologies 12 Akademika Pavlova Str., St. Petersburg, 197376

References

  1. Атякшин Д. А., Бурцева А. С., Соколов Д. А. Оценка эффективности выявления тучных клеток в тощей кишке монгольских песчанок с помощью гистохимических методик // Журнал анатомии и гистопатологии. 2016. Т. 5, № 4. С. 85-89. doi: 10.18499/2225-7357-2016-5-4-85-89.
  2. Быков В. Л. Секреторные механизмы и секреторные продукты тучных клеток // Морфология. 1999. Т. 115, вып. 2. С. 72-79.
  3. Коржевский Д. Э. Тучные клетки в сосудистом сплетении у детей // Морфология. 1997. Т. 112, вып. 5. С. 48-50.
  4. Коржевский Д. Э. Тучные клетки в сосудистом сплетении конечного мозга при различных видах смерти // Теория и практика судебной медицины. Труды Петербургск. науч. общ-ва судебных медиков. СПб., 1998. С. 43-45
  5. Кутукова Н. А., Назаров П. Г. Tучные клетки: роль в воспалении, восстановлении тканей и развитии фиброза // Цитокины и воспаление. 2014. Т. 13, № 2. С. 11-20.
  6. Турыгин В. В., Бабик Т. М., Бояков А. А. Характеристика тучных клеток сосудистых сплетений желудочков головного мозга человека при старении // Морфология. 2004. Т. 126, вып. 6. С. 61-62.
  7. Atiakshin D., Samoilova V., Buchwalow I., Boecker W., Tiemann M. Characterization of mast cell populations using different methods for their identification // Histochem Cell Biol. 2017. Vol. 147, № 6. P. 683-694. doi: 10.1007/s00418-017-1547-7.
  8. Babik T. M. Changes in mast cells of vascular plexuses of human cerebral ventricles in atherosclerosis of precerebral arteries // Bull. Exper. Biol. Med. 2005. Vol. 140, № 5. P. 571-573.
  9. Chikahisa S., Kodama T., Soya A., Sagawa Y., Ishimaru Y., Sei H., Nishino S. Histamine from brain resident mast cells promotes wakefulness and modulates behavioral states // PLoS One. 2013. Vol. 8. P. e78434. doi: 10.1371/journal.pone.0078434.
  10. Crivellato E., Nico B., Gallo V. P., Ribatti D. Cell secretion me diated by granule-associated vesicle transport: a glimpse at evolution // Anat. Rec. (Hoboken). 2010. Vol. 293, № 7. P. 1115- 1124. doi: 10.1002/ar.21146.
  11. de Groot N. S., Burgas M. T. Is membrane homeostasis the missing link between inflammation and neurodegenerative diseases? // Cell Mol. Life Sci. 2015. Vol. 72, № 24. P. 4795-4805. doi: 10.1007/s00018-015-2038-4.
  12. Dropp J. J. Mast cells in the central nervous system of several rodents // Anat Rec. 1972. Vol. 174, № 2. P. 227-237. doi: 10.1002/ar.1091740207.
  13. Dvorak A. M. Piecemeal degranulation of basophils and mast cells is effected by vesicular transport of stored secretory granule contents // Chem. Immunol. Allergy. 2005. Vol. 85. P. 135-184. doi.org/10.1159/000086516.
  14. Esposito P., Gheorghe D., Kandere K., Pang X., Connolly R., Jacobson S., Theoharides T. C. Acute stress increases permeability of the blood-brain barrier through activation of brain mast cells // Brain Res. 2001. Vol. 888. P. 117-127. doi. org/10.1016/S0006-8993(00)03026-2.
  15. Larson A. A., Thomas M. J., McElhose A., Kovacs K. J. Spon taneous locomotor activity correlates with the degranulation of mast cells in the meninges rather than in the thalamus: disruptive effect of cocaine // Brain Res. 2011. Vol. 1395. P. 30-37. doi: 10.1016/j.brainres.2011.04.033.
  16. Porzionato A., Macchi V., Parenti A., De Caro R. The distribution of mast cells in the human area postrema // J. Anat. 2004. Vol. 204, № 2. P. 141-147. doi: 10.1111/j.1469-7580.2004.00256.x
  17. Welle M. Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase // J. Leukoc. Biol. 1997. Vol. 61, № 3. P. 233-245.
  18. Wernersson S., Pejler G. Mast cell secretory granules: armed for battle // Nat. Rev. Immunol. 2014. Vol. 14, № 7. P. 478-494. doi: 10.1038/nri3690.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies