Development of thoracic aortic aneurysm: the potential role of morphological features of functional zones

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aneurysm is the most common pathology affecting the aorta. Advances in diagnostic and therapeutic approaches have reduced the associated mortality rate to 21.7%. Aneurysm formation involves morphological and functional remodeling of the aortic wall, leading to altered biomechanical properties of the vessel. Along the aorta, distinct functional zones with a high density of sensory receptors have been identified. These receptor zones have a specific anatomical distribution, with most sensory receptors localized in the tunica media of aorta. The vascular wall within these zones undergoes changes in lumen diameter that differ from those observed in other regions of the aorta. The morphological characteristics of these receptor-rich segments determine the unique biomechanical behavior of the vessel. The receptor zones of the aorta topographically correspond to the regions most frequently affected by aneurysm formation.

Full Text

Restricted Access

About the authors

Andrey V. Suslov

National Medical Research Centre of Cardiology Named After Academician E.I. Chazov; The Russian National Research Medical University named after N.I. Pirogov

Author for correspondence.
Email: dr_suslov@mail.ru
ORCID iD: 0000-0003-0613-8556
SPIN-code: 8738-6986

MD, Cand. Sci. (Medicine)

Russian Federation, 15A Academician Chazova st, 121552, Moscow; Moscow

Alexey E. Strizhkov

The First Sechenov Moscow State Medical University

Email: strizhkov@inbox.ru
ORCID iD: 0000-0003-0730-347X
SPIN-code: 5450-4704

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Moscow

Tatiana V. Kirichenko

National Medical Research Centre of Cardiology Named After Academician E.I. Chazov; The Russian National Research Medical University named after N.I. Pirogov

Email: t-gorchakova@mail.ru
ORCID iD: 0000-0002-2899-9202
SPIN-code: 4332-9045

MD, Cand. Sci. (Medicine)

Russian Federation, 15A Academician Chazova st, 121552, Moscow; Moscow

Petr V. Chumachenko

National Medical Research Centre of Cardiology Named After Academician E.I. Chazov

Email: chumach7234@mail.ru
ORCID iD: 0000-0002-1162-6055

MD, Cand. Sci. (Medicine)

Russian Federation, 15A Academician Chazova st, 121552, Moscow

Zukhra B. Khasanova

National Medical Research Centre of Cardiology Named After Academician E.I. Chazov

Email: zukhra@yandex.ru
ORCID iD: 0000-0002-4689-7955
SPIN-code: 5120-5137
Russian Federation, 15A Academician Chazova st, 121552, Moscow

Anton Yu. Postnov

National Medical Research Centre of Cardiology Named After Academician E.I. Chazov; Petrovsky National Research Centre of Surgery

Email: anton-5@mail.ru
ORCID iD: 0000-0002-2501-7269
SPIN-code: 3991-1357

MD, Dr. Sci. (Medicine)

Russian Federation, 15A Academician Chazova st, 121552, Moscow; Moscow

References

  1. Roth GA, Mensah GA, Johnson CO, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982–3021. doi: 10.1016/j.jacc.2020.11.010
  2. Morisaki H. Hereditary Aortic Aneurysms and Dissections: Clinical Diagnosis and Genetic Testing. Ann Vasc Dis. 2024;17(2):128–134. doi: 10.3400/avd.ra.24-00013
  3. Belov YuV, Charchyan ER, Khachatryan ZR. Dissection of the entire aorta: what to do? Moscow: Media Sfera; 2019. (In Russ.) EDN: NWZZCM
  4. Abugov SA, Averina TB, Akchurin RS, et al. Clinical guidelines. Guidelines for the diagnosis and treatment of aortic diseases (2017). Russian Journal of Cardiology and Cardiovascular Surgery. 2018;11(1):7–67. (In Russ.) EDN: YPAKRP
  5. Kruglyy MM, Yartsev YuA. Aorta. Saratov: Izdatel’stvo Saratovskogo universiteta; 1981. (In Russ.)
  6. Evangelista A, Isselbacher EM, Bossone E, et al. Insights From the International Registry of Acute Aortic Dissection: A 20-Year Experience of Collaborative Clinical Research. Circulation. 2018;137(17):1846–1860. doi: 10.1161/CIRCULATIONAHA.117.031264
  7. Qiu P, Yang M, Pu H, et al. Potential Clinical Value of Biomarker-Guided Emergency Triage for Thoracic Aortic Dissection. Front Cardiovasc Med. 2022;8:777327. doi: 10.3389/fcvm.2021.777327
  8. Paltseva EM. Aortic aneurysms: etiology and pathomorphology. Molecular Medicine. 2015;4:3–10. EDN: UBVTPN
  9. Bisyarina VP, Yakovlev VM, Kuksa PYa. Arterial vessels and age. Moscow: Izdatelstvo Meditsina; 1986. (In Russ.) EDN: MHZFPF
  10. Domagała D, Data K, Szyller H, et al. Cellular, Molecular and Clinical Aspects of Aortic Aneurysm-Vascular Physiology and Pathophysiology. Cells. 2024;13(3):274. doi: 10.3390/cells13030274
  11. Salapina OA, Mironov AA. The morphogenesis of the tunica elastica interna of the rat aorta in the early periods after birth. Morphology. 1993;104(5-6):54–64. (In Russ.)
  12. Farand P, Garon A, Plante GE. Structure of large arteries: orientation of elastin in rabbit aortic internal elastic lamina and in the elastic lamellae of aortic media. Microvasc Res. 2007;73(2):95–99. doi: 10.1016/j.mvr.2006.10.005
  13. Halushka MK, Angelini A, Bartoloni G, et al. Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association For European Cardiovascular Pathology: II. Noninflammatory degenerative diseases - nomenclature and diagnostic criteria. Cardiovasc Pathol. 2016;25(3):247–257. doi: 10.1016/j.carpath.2016.03.002
  14. Albu M, Şeicaru DA, Pleşea RM, et al. Remodeling of the aortic wall layers with ageing. Rom J Morphol Embryol. 2022;63(1):71–82. doi: 10.47162/RJME.63.1.07
  15. Lévy BI, Tedgui A, editors. Biology of the arterial wall. Boston: Kluwer Academic; 1999.
  16. Dobrin PB. Vascular Mechanics. Baltimore: Williams & Wilkins; 1983.
  17. O’Connell MK, Murthy S, Phan S, et al. The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biol. 2008;27(3):171–181. doi: 10.1016/j.matbio.2007.10.008
  18. Halloran BG, Davis VA, McManus BM, et al. Localization of aortic disease is associated with intrinsic differences in aortic structure. J Surg Res. 1995;59(1):17–22. doi: 10.1006/jsre.1995.1126
  19. Toyama BH, Hetzer MW. Protein homeostasis: live long, won’t prosper. Nat Rev Mol Cell Biol. 2013;14(1):55–61. doi: 10.1038/nrm3496
  20. Albu M, Şeicaru DA, Pleşea RM, et al. Assessment of the aortic wall histological changes with ageing. Rom J Morphol Embryol. 2021;62(1):85–100. doi: 10.47162/RJME.62.1.08
  21. Tsamis A, Krawiec JT, Vorp DA. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J R Soc Interface. 2013;10(83):20121004. doi: 10.1098/rsif.2012.1004
  22. Ganizada BH, Veltrop RJA., Akbulut AC, et al. Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections. Basic Res Cardiol. 2024;119(3):371–395. doi: 10.1007/s00395-024-01053-1
  23. Weber VR, Rubanova MP, Zhmaylova SV, et al. Aortal extracellular matrix morphology in experimental chronic stress. Morphology. 2018;153(3):56–57. (In Russ.) EDN: UZFTAH
  24. El-Hamamsy I, Yacoub MH. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol. 2009;6(12):771–786. doi: 10.1038/nrcardio.2009.191
  25. Robertson E, Dilworth C, Lu Y, et al. Molecular mechanisms of inherited thoracic aortic disease - from gene variant to surgical aneurysm. Biophys Rev. 2015;7(1):105–115. doi: 10.1007/s12551-014-0147-1
  26. Pukaluk A, Wolinski H, Viertler C, et al. Changes in the microstructure of the human aortic adventitia under biaxial loading investigated by multi-photon microscopy. Acta Biomater. 2023;161:154–169. doi: 10.1016/j.actbio.2023.02.027
  27. Fruntashu NM, Hachina TV. Development of aortal vasa vasorum. Morphology. 2019;155(2):296. (In Russ.) EDN: OTRKVF
  28. Pfaltzgraff ER, Shelton EL, Galindo CL, et al. Embryonic domains of the aorta derived from diverse origins exhibit distinct properties that converge into a common phenotype in the adult. J Mol Cell Cardiol. 2014;69:88–96. doi: 10.1016/j.yjmcc.2014.01.016
  29. Sinha S, Iyer D, Granata A. Embryonic origins of human vascular smooth muscle cells: implications for in vitro modeling and clinical application. Cell Mol Life Sci. 2014;71(12):2271–2288. doi: 10.1007/s00018-013-1554-3
  30. Hu Y, Cai Z, He B. Smooth Muscle Heterogeneity and Plasticity in Health and Aortic Aneurysmal Disease. Int J Mol Sci. 2023;24(14):11701. doi: 10.3390/ijms241411701
  31. Murillo H, Lane MJ, Punn R, et al. Imaging of the aorta: embryology and anatomy. Semin Ultrasound CT MR. 2012;33(3):169–190. doi: 10.1053/j.sult.2012.01.013
  32. Ganizada BH, Veltrop RJA, Akbulut AC, et al. Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections. Basic Res Cardiol. 2024;119(3):371–395. doi: 10.1007/s00395-024-01053-1
  33. Kostina DA, Voronkina IV, Smagina LV, et al. Study of functional properties of smooth muscle cells in aortic aneurysm. Tsitologiya. 2013;55(10):725–731. (In Russ.) EDN: RCHUZX
  34. Rachev A, Gleason Jr RL. Theoretical study on the effects of pressure-induced remodeling on geometry and mechanical non-homogeneity of conduit arteries. Biomech Model Mechanobiol. 2011;10(1):79–93. doi: 10.1007/s10237-010-0219-5
  35. Chen R, McVey DG, Shen D, et al. Phenotypic Switching of Vascular Smooth Muscle Cells in Atherosclerosis. J Am Heart Assoc. 2023;12(20):031121. doi: 10.1161/JAHA.123.031121
  36. Cheung C, Bernardo AS, Trotter MWB, et al. Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol. 2012;30(2):165–173. doi: 10.1038/nbt.2107
  37. Cheng JK, Wagenseil JE. Extracellular matrix and the mechanics of large artery development. Biomech Model Mechanobiol. 2012;11(8):1169–1186. doi: 10.1007/s10237-012-0405-8
  38. Rombouts KB, van Merrienboer TAR, Ket JCF, et al. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest. 2022;52(4):e13697. doi: 10.1111/eci.13697
  39. Павлов, И.П.Лекции по физиологии (1912 - 1913) / И.П. Павлов ; ред. И.П. Разенков. – Москва : Издательство Академии медицинских наук СССР, 1952.
  40. Ardell JL, Andresen MC, Armour JA, et al. Translational neurocardiology: preclinical models and cardioneural integrative aspects. J Physiol. 2016;594(14):3877–3909. doi: 10.1113/JP271869
  41. Hadaya J, Ardell JL. Autonomic Modulation for Cardiovascular Disease. Front Physiol. 2020;11:617459. doi: 10.3389/fphys.2020.617459
  42. Bailey TW, Hermes SM, Andresen MC, Aicher SA. Cranial visceral afferent pathways through the nucleus of the solitary tract to caudal ventrolateral medulla or paraventricular hypothalamus: target-specific synaptic reliability and convergence patterns. J Neurosci. 2006;26(46):11893–11902. doi: 10.1523/JNEUROSCI.2044-06.2006
  43. van Weperen VYH, Vaseghi M. Cardiac vagal afferent neurotransmission in health and disease: review and knowledge gaps. Front Neurosci. 2023;17:1192188. doi: 10.3389/fnins.2023.1192188
  44. Pestryayev VA, Kinzhalova SV, Makarov RA. The minute blood volume at rest calculation based on arterial pressure, pulse rate, weight, height and the minute blood volume index. Journal of Ural Medical Academic Science. 2012;3(40):85–86. EDN: PWOUVR
  45. Talman WT, Kelkar P. Neural control of the heart. Central and peripheral. Neurol Clin. 1993;11(2):239–256.
  46. Hainsworth R. Cardiovascular control from cardiac and pulmonary vascular receptors. Exp Physiol. 2014;99(2):312–319. doi: 10.1113/expphysiol.2013.072637
  47. Milnor W.R. Cardiovascular physiology. New York: Oxford University press; 1990.
  48. Tkachenko BI, Levtov VA, Moskalenko YE, et al. Physiology of blood circulation: Regulation of blood circulation. Saint Petersburg: Nauka: Leningradskoe otdelenie; 1986. (In Russ.)
  49. Grigor’eva TA. The Innervation of Blood Vessels. New York: Pergamon Press; 1962.
  50. Kareeva NI, Shvalev VN. Adrenergic innervation of the aortic arch in areas with high and low frequency of development of atherosclerosis. Morfologicheskie Vedomosti – Morphological Newsletter. 2005;(3-4):44–45. EDN: MHWUBR
  51. Brovtsev VO, Rekhter MD, Antonov AS, et al. The regional morphological characteristics of the endothelium of the human thoracic aorta in perfusion fixation. Morphology. 1993;105(9-10):7–18.
  52. Reutersberg B, Pelisek J, Ouda A, et al. Baroreceptors in the Aortic Arch and Their Potential Role in Aortic Dissection and Aneurysms. J Clin Med. 2022;11(5):1161. doi: 10.3390/jcm11051161
  53. Seong J, Jeong W, Smith N, Towner RA. Hemodynamic effects of long-term morphological changes in the human carotid sinus. J Biomech. 2015;48(6):956–962. doi: 10.1016/j.jbiomech.2015.02.009
  54. Krasny W, Morin C, Magoariec H, Avril S. A comprehensive study of layer-specific morphological changes in the microstructure of carotid arteries under uniaxial load. Acta Biomater. 2017;(57):342–351. doi: 10.1016/j.actbio.2017.04.033
  55. Otlyga DA, Junemann OA, Tsvetkova EG, Saveliev SV. Functional morphology of the human carotid glomus. Clinical and Experimental Morphology. 2019;8(3):13–20. doi: 10.31088/CEM2019.08.03.02 EDN: XDDAQR
  56. James TN, Hageman GR, Urthaler F. Anatomic and physiologic considerations of a cardiogenic hypertensive chemoreflex. Am J Cardiol. 1979;44(5):852–859. doi: 10.1016/0002-9149(79)90213-3

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Functional zones of the aorta: 1, ventral surface of the aortic arch; 2, origin of the brachiocephalic trunk; 3, origin of the left subclavian artery; 4, region of the ligamentum arteriosum.

Download (173KB)

Copyright (c) 2024 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Периодический печатный журнал зарегистрирован как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): 0110212 от 08.02.1993.
Сетевое издание зарегистрировано как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): ЭЛ № ФС 77 - 84733 от 10.02.2023.