Development of thoracic aortic aneurysm: the potential role of morphological features of functional zones
- Authors: Suslov A.V.1,2, Strizhkov A.E.3, Kirichenko T.V.1,2, Chumachenko P.V.1, Khasanova Z.B.1, Postnov A.Y.1,4
-
Affiliations:
- National Medical Research Centre of Cardiology Named After Academician E.I. Chazov
- The Russian National Research Medical University named after N.I. Pirogov
- The First Sechenov Moscow State Medical University
- Petrovsky National Research Centre of Surgery
- Issue: Vol 162, No 4 (2024)
- Pages: 464-473
- Section: Reviews
- Submitted: 02.11.2024
- Accepted: 28.12.2024
- Published: 28.12.2024
- URL: https://j-morphology.com/1026-3543/article/view/640806
- DOI: https://doi.org/10.17816/morph.640806
- ID: 640806
Cite item
Abstract
Aneurysm is the most common pathology affecting the aorta. Advances in diagnostic and therapeutic approaches have reduced the associated mortality rate to 21.7%. Aneurysm formation involves morphological and functional remodeling of the aortic wall, leading to altered biomechanical properties of the vessel. Along the aorta, distinct functional zones with a high density of sensory receptors have been identified. These receptor zones have a specific anatomical distribution, with most sensory receptors localized in the tunica media of aorta. The vascular wall within these zones undergoes changes in lumen diameter that differ from those observed in other regions of the aorta. The morphological characteristics of these receptor-rich segments determine the unique biomechanical behavior of the vessel. The receptor zones of the aorta topographically correspond to the regions most frequently affected by aneurysm formation.
Full Text

About the authors
Andrey V. Suslov
National Medical Research Centre of Cardiology Named After Academician E.I. Chazov; The Russian National Research Medical University named after N.I. Pirogov
Author for correspondence.
Email: dr_suslov@mail.ru
ORCID iD: 0000-0003-0613-8556
SPIN-code: 8738-6986
MD, Cand. Sci. (Medicine)
Russian Federation, 15A Academician Chazova st, 121552, Moscow; MoscowAlexey E. Strizhkov
The First Sechenov Moscow State Medical University
Email: strizhkov@inbox.ru
ORCID iD: 0000-0003-0730-347X
SPIN-code: 5450-4704
MD, Cand. Sci. (Medicine), Assistant Professor
Russian Federation, MoscowTatiana V. Kirichenko
National Medical Research Centre of Cardiology Named After Academician E.I. Chazov; The Russian National Research Medical University named after N.I. Pirogov
Email: t-gorchakova@mail.ru
ORCID iD: 0000-0002-2899-9202
SPIN-code: 4332-9045
MD, Cand. Sci. (Medicine)
Russian Federation, 15A Academician Chazova st, 121552, Moscow; MoscowPetr V. Chumachenko
National Medical Research Centre of Cardiology Named After Academician E.I. Chazov
Email: chumach7234@mail.ru
ORCID iD: 0000-0002-1162-6055
MD, Cand. Sci. (Medicine)
Russian Federation, 15A Academician Chazova st, 121552, MoscowZukhra B. Khasanova
National Medical Research Centre of Cardiology Named After Academician E.I. Chazov
Email: zukhra@yandex.ru
ORCID iD: 0000-0002-4689-7955
SPIN-code: 5120-5137
Russian Federation, 15A Academician Chazova st, 121552, Moscow
Anton Yu. Postnov
National Medical Research Centre of Cardiology Named After Academician E.I. Chazov; Petrovsky National Research Centre of Surgery
Email: anton-5@mail.ru
ORCID iD: 0000-0002-2501-7269
SPIN-code: 3991-1357
MD, Dr. Sci. (Medicine)
Russian Federation, 15A Academician Chazova st, 121552, Moscow; MoscowReferences
- Roth GA, Mensah GA, Johnson CO, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982–3021. doi: 10.1016/j.jacc.2020.11.010
- Morisaki H. Hereditary Aortic Aneurysms and Dissections: Clinical Diagnosis and Genetic Testing. Ann Vasc Dis. 2024;17(2):128–134. doi: 10.3400/avd.ra.24-00013
- Belov YuV, Charchyan ER, Khachatryan ZR. Dissection of the entire aorta: what to do? Moscow: Media Sfera; 2019. (In Russ.) EDN: NWZZCM
- Abugov SA, Averina TB, Akchurin RS, et al. Clinical guidelines. Guidelines for the diagnosis and treatment of aortic diseases (2017). Russian Journal of Cardiology and Cardiovascular Surgery. 2018;11(1):7–67. (In Russ.) EDN: YPAKRP
- Kruglyy MM, Yartsev YuA. Aorta. Saratov: Izdatel’stvo Saratovskogo universiteta; 1981. (In Russ.)
- Evangelista A, Isselbacher EM, Bossone E, et al. Insights From the International Registry of Acute Aortic Dissection: A 20-Year Experience of Collaborative Clinical Research. Circulation. 2018;137(17):1846–1860. doi: 10.1161/CIRCULATIONAHA.117.031264
- Qiu P, Yang M, Pu H, et al. Potential Clinical Value of Biomarker-Guided Emergency Triage for Thoracic Aortic Dissection. Front Cardiovasc Med. 2022;8:777327. doi: 10.3389/fcvm.2021.777327
- Paltseva EM. Aortic aneurysms: etiology and pathomorphology. Molecular Medicine. 2015;4:3–10. EDN: UBVTPN
- Bisyarina VP, Yakovlev VM, Kuksa PYa. Arterial vessels and age. Moscow: Izdatelstvo Meditsina; 1986. (In Russ.) EDN: MHZFPF
- Domagała D, Data K, Szyller H, et al. Cellular, Molecular and Clinical Aspects of Aortic Aneurysm-Vascular Physiology and Pathophysiology. Cells. 2024;13(3):274. doi: 10.3390/cells13030274
- Salapina OA, Mironov AA. The morphogenesis of the tunica elastica interna of the rat aorta in the early periods after birth. Morphology. 1993;104(5-6):54–64. (In Russ.)
- Farand P, Garon A, Plante GE. Structure of large arteries: orientation of elastin in rabbit aortic internal elastic lamina and in the elastic lamellae of aortic media. Microvasc Res. 2007;73(2):95–99. doi: 10.1016/j.mvr.2006.10.005
- Halushka MK, Angelini A, Bartoloni G, et al. Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association For European Cardiovascular Pathology: II. Noninflammatory degenerative diseases - nomenclature and diagnostic criteria. Cardiovasc Pathol. 2016;25(3):247–257. doi: 10.1016/j.carpath.2016.03.002
- Albu M, Şeicaru DA, Pleşea RM, et al. Remodeling of the aortic wall layers with ageing. Rom J Morphol Embryol. 2022;63(1):71–82. doi: 10.47162/RJME.63.1.07
- Lévy BI, Tedgui A, editors. Biology of the arterial wall. Boston: Kluwer Academic; 1999.
- Dobrin PB. Vascular Mechanics. Baltimore: Williams & Wilkins; 1983.
- O’Connell MK, Murthy S, Phan S, et al. The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biol. 2008;27(3):171–181. doi: 10.1016/j.matbio.2007.10.008
- Halloran BG, Davis VA, McManus BM, et al. Localization of aortic disease is associated with intrinsic differences in aortic structure. J Surg Res. 1995;59(1):17–22. doi: 10.1006/jsre.1995.1126
- Toyama BH, Hetzer MW. Protein homeostasis: live long, won’t prosper. Nat Rev Mol Cell Biol. 2013;14(1):55–61. doi: 10.1038/nrm3496
- Albu M, Şeicaru DA, Pleşea RM, et al. Assessment of the aortic wall histological changes with ageing. Rom J Morphol Embryol. 2021;62(1):85–100. doi: 10.47162/RJME.62.1.08
- Tsamis A, Krawiec JT, Vorp DA. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J R Soc Interface. 2013;10(83):20121004. doi: 10.1098/rsif.2012.1004
- Ganizada BH, Veltrop RJA., Akbulut AC, et al. Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections. Basic Res Cardiol. 2024;119(3):371–395. doi: 10.1007/s00395-024-01053-1
- Weber VR, Rubanova MP, Zhmaylova SV, et al. Aortal extracellular matrix morphology in experimental chronic stress. Morphology. 2018;153(3):56–57. (In Russ.) EDN: UZFTAH
- El-Hamamsy I, Yacoub MH. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol. 2009;6(12):771–786. doi: 10.1038/nrcardio.2009.191
- Robertson E, Dilworth C, Lu Y, et al. Molecular mechanisms of inherited thoracic aortic disease - from gene variant to surgical aneurysm. Biophys Rev. 2015;7(1):105–115. doi: 10.1007/s12551-014-0147-1
- Pukaluk A, Wolinski H, Viertler C, et al. Changes in the microstructure of the human aortic adventitia under biaxial loading investigated by multi-photon microscopy. Acta Biomater. 2023;161:154–169. doi: 10.1016/j.actbio.2023.02.027
- Fruntashu NM, Hachina TV. Development of aortal vasa vasorum. Morphology. 2019;155(2):296. (In Russ.) EDN: OTRKVF
- Pfaltzgraff ER, Shelton EL, Galindo CL, et al. Embryonic domains of the aorta derived from diverse origins exhibit distinct properties that converge into a common phenotype in the adult. J Mol Cell Cardiol. 2014;69:88–96. doi: 10.1016/j.yjmcc.2014.01.016
- Sinha S, Iyer D, Granata A. Embryonic origins of human vascular smooth muscle cells: implications for in vitro modeling and clinical application. Cell Mol Life Sci. 2014;71(12):2271–2288. doi: 10.1007/s00018-013-1554-3
- Hu Y, Cai Z, He B. Smooth Muscle Heterogeneity and Plasticity in Health and Aortic Aneurysmal Disease. Int J Mol Sci. 2023;24(14):11701. doi: 10.3390/ijms241411701
- Murillo H, Lane MJ, Punn R, et al. Imaging of the aorta: embryology and anatomy. Semin Ultrasound CT MR. 2012;33(3):169–190. doi: 10.1053/j.sult.2012.01.013
- Ganizada BH, Veltrop RJA, Akbulut AC, et al. Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections. Basic Res Cardiol. 2024;119(3):371–395. doi: 10.1007/s00395-024-01053-1
- Kostina DA, Voronkina IV, Smagina LV, et al. Study of functional properties of smooth muscle cells in aortic aneurysm. Tsitologiya. 2013;55(10):725–731. (In Russ.) EDN: RCHUZX
- Rachev A, Gleason Jr RL. Theoretical study on the effects of pressure-induced remodeling on geometry and mechanical non-homogeneity of conduit arteries. Biomech Model Mechanobiol. 2011;10(1):79–93. doi: 10.1007/s10237-010-0219-5
- Chen R, McVey DG, Shen D, et al. Phenotypic Switching of Vascular Smooth Muscle Cells in Atherosclerosis. J Am Heart Assoc. 2023;12(20):031121. doi: 10.1161/JAHA.123.031121
- Cheung C, Bernardo AS, Trotter MWB, et al. Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol. 2012;30(2):165–173. doi: 10.1038/nbt.2107
- Cheng JK, Wagenseil JE. Extracellular matrix and the mechanics of large artery development. Biomech Model Mechanobiol. 2012;11(8):1169–1186. doi: 10.1007/s10237-012-0405-8
- Rombouts KB, van Merrienboer TAR, Ket JCF, et al. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest. 2022;52(4):e13697. doi: 10.1111/eci.13697
- Павлов, И.П.Лекции по физиологии (1912 - 1913) / И.П. Павлов ; ред. И.П. Разенков. – Москва : Издательство Академии медицинских наук СССР, 1952.
- Ardell JL, Andresen MC, Armour JA, et al. Translational neurocardiology: preclinical models and cardioneural integrative aspects. J Physiol. 2016;594(14):3877–3909. doi: 10.1113/JP271869
- Hadaya J, Ardell JL. Autonomic Modulation for Cardiovascular Disease. Front Physiol. 2020;11:617459. doi: 10.3389/fphys.2020.617459
- Bailey TW, Hermes SM, Andresen MC, Aicher SA. Cranial visceral afferent pathways through the nucleus of the solitary tract to caudal ventrolateral medulla or paraventricular hypothalamus: target-specific synaptic reliability and convergence patterns. J Neurosci. 2006;26(46):11893–11902. doi: 10.1523/JNEUROSCI.2044-06.2006
- van Weperen VYH, Vaseghi M. Cardiac vagal afferent neurotransmission in health and disease: review and knowledge gaps. Front Neurosci. 2023;17:1192188. doi: 10.3389/fnins.2023.1192188
- Pestryayev VA, Kinzhalova SV, Makarov RA. The minute blood volume at rest calculation based on arterial pressure, pulse rate, weight, height and the minute blood volume index. Journal of Ural Medical Academic Science. 2012;3(40):85–86. EDN: PWOUVR
- Talman WT, Kelkar P. Neural control of the heart. Central and peripheral. Neurol Clin. 1993;11(2):239–256.
- Hainsworth R. Cardiovascular control from cardiac and pulmonary vascular receptors. Exp Physiol. 2014;99(2):312–319. doi: 10.1113/expphysiol.2013.072637
- Milnor W.R. Cardiovascular physiology. New York: Oxford University press; 1990.
- Tkachenko BI, Levtov VA, Moskalenko YE, et al. Physiology of blood circulation: Regulation of blood circulation. Saint Petersburg: Nauka: Leningradskoe otdelenie; 1986. (In Russ.)
- Grigor’eva TA. The Innervation of Blood Vessels. New York: Pergamon Press; 1962.
- Kareeva NI, Shvalev VN. Adrenergic innervation of the aortic arch in areas with high and low frequency of development of atherosclerosis. Morfologicheskie Vedomosti – Morphological Newsletter. 2005;(3-4):44–45. EDN: MHWUBR
- Brovtsev VO, Rekhter MD, Antonov AS, et al. The regional morphological characteristics of the endothelium of the human thoracic aorta in perfusion fixation. Morphology. 1993;105(9-10):7–18.
- Reutersberg B, Pelisek J, Ouda A, et al. Baroreceptors in the Aortic Arch and Their Potential Role in Aortic Dissection and Aneurysms. J Clin Med. 2022;11(5):1161. doi: 10.3390/jcm11051161
- Seong J, Jeong W, Smith N, Towner RA. Hemodynamic effects of long-term morphological changes in the human carotid sinus. J Biomech. 2015;48(6):956–962. doi: 10.1016/j.jbiomech.2015.02.009
- Krasny W, Morin C, Magoariec H, Avril S. A comprehensive study of layer-specific morphological changes in the microstructure of carotid arteries under uniaxial load. Acta Biomater. 2017;(57):342–351. doi: 10.1016/j.actbio.2017.04.033
- Otlyga DA, Junemann OA, Tsvetkova EG, Saveliev SV. Functional morphology of the human carotid glomus. Clinical and Experimental Morphology. 2019;8(3):13–20. doi: 10.31088/CEM2019.08.03.02 EDN: XDDAQR
- James TN, Hageman GR, Urthaler F. Anatomic and physiologic considerations of a cardiogenic hypertensive chemoreflex. Am J Cardiol. 1979;44(5):852–859. doi: 10.1016/0002-9149(79)90213-3
Supplementary files
