DEVELOPMENT OF DISSOCIATED CELLS OF VARIOUS RAT CNS PRIMORDIA AFTER TRANSPLANTATION INTO THE DAMAGED NERVE



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The purpose of this paper was to examine the possibilities of engraftment, and to study the differentiation of the dissociated cells from the embryonic primordia of the spinal cord and the neocortex of Wistar rats, after their transplantation into the sciatic nerve of adult animals. The cell suspension obtained as a result of a dissociation of fragments of the cervical spinal cord and the anterior cerebral vesicle from rat fetuses at day 15 of development, was injected into the proximal segment of a previously damaged sciatic nerve. Using the immunocytochemichal marker of neural stem/progenitor cells (Msi-1) the transplanted cells were identified in the nerve trunks after 1 day after the operation. After 21 day some of these cells underwent differentiation into NeuN-immunopositive neurons, however their number was small. Thus, dissociated precursor cells from embryonic rat spinal cord and neocortex survive for three weeks under conditions of transplantation into the damaged nerve and retain the ability to differentiate into neurons, but the number is small. Most of the cells in the neocortex transplants, unlike those from spinal cord transplants, within 21 days after the operation were represented by the ependymocytes.

Full Text

Restricted Access

About the authors

Ye. S. Petrova

RAMS North-Western Branch Institute of Experimental Medicine

Ye. N. Isayeva

State Research Institute of Highly Pure Biopreparations

D. E. Korzhevskiy

RAMS North-Western Branch Institute of Experimental Medicine

Email: iemmorphol@yandex.ru

References

  1. Карагяур М. Н., Лопатина Т. В., Стамбольский Д. В. и др. Мезенхимальные стволовые клетки стимулируют восстановление периферического нерва благодаря секреции нейротрофических факторов. В кн.: Науч. труды Всерос. конф. «Регенеративная биология и медицина». М., Издат. дом «Нарконет», 2011, с. 78–79.
  2. Коржевский Д. Э., Ленцман М. И., Кирик О. В. и Отеллин В. А. Виментин-иммунопозитивные клетки конечного мозга крысы после экспериментального ишемического инсульта. Морфология, 2007, т. 132, вып. 5, с. 23–27.
  3. Петрова Е. С. Применение стволовых клеток для стимуляции регенерации поврежденного нерва. Цитология, 2012, т. 54, № 7, с. 525–540.
  4. Петрова Е. С. и Отеллин В. А. Oсобенности развития гомо-и гетеротопических аллотрансплантатов эмбрионального неокортекса крыс. Цитология, 2000, т. 42, № 8, с. 750–757.
  5. Сухинич К. К., Подгорный О. В. и Александрова М. А. Иммуногистохимический анализ развития суспензионных и тканевых нейротрансплантатов. Изв. РАН. Серия биол., 2011, № 6, с. 659–668.
  6. Челышев Ю. А. Регенерация в нервной системе: Руководство по гистологии. СПб., СпецЛит, 2011, т. 1, с. 656–665.
  7. Чумасов Е. И. и Петрова Е. С. Имплантация эмбриональных закладок неокортекса и спинного мозга в поврежденный периферический нерв взрослой крысы. Бюл. экспер. биол., 1990, т. 108, № 8, с. 198–201.
  8. Bellamkonda R. V. Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy. Biomaterials, 2006, v. 27, № 19, p. 3515–3518.
  9. Bystron I., Otellin V. A., Wierzba-Bobrowicz T. and Dymecki J. Development of human fetal substantia nigra grafts in the brain of non-immunosuppressed rats. Folia Neuropathol., 1997, v. 35, № 2, p. 87–93.
  10. Cheng C. and Zochodne D. W. In vivo proliferation, migration and phenotypic changes of Schwann cells in the presence of myelinated fibers. Neuroscience, 2002, v. 115, № 1, p. 321–329.
  11. Chojnacki A. K., Mak G. K. and Weiss S. Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat. Rev. Neurosci., 2009, v.10, № 4, p. 153–163.
  12. Geuna S., Nicolino S., Raimondo S. et al. Nerve regeneration along bioengineered scaffolds. Microsurgery, 2007, v. 27, № 5, p. 429–438.
  13. Mokrý J. and Karbanová J. Foetal mouse neural stem cells give rise to ependymal cells in vitro. Folia Biol (Praha), 2006, v. 52, № 5, p. 149–155.
  14. Walsh S. and Midha R. Use of stem cells to augment nerve injury repair. Neurosurgery, 2009, v. 65, № 4, p. 80–86.
  15. Xiong G., Ozaki N. and Sugiura Y. Transplanted embryonic spinal tissue promotes severed sciatic nerve regeneration in rats. Arch. Histol. Cytol., 2009, v. 72, № 2, p. 127–138.
  16. Zawada W. M., Zastrow D. J., Clarkson E. D. et al. Growth factors improve immediate survival of embryonic dopamine neurons after transplantation into rats. Brain Res., 1998, v. 786, № 1–2, p. 96–103.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies